
The OpenBSD C particularist

Angelo Rossi <angelo.rossi.homelab@gmail.com>

July, 23 2024

1

mailto:angelo.rossi.homelab@gmail.com

Contents

Contents 2

1 Preface. 9
1.1 Documentation Conventions. 10
1.2 Notes on man on OpenBSD. 11
1.3 Acknowledgements. 11
1.4 Licensing. 11

2 Introduction. 13
2.1 System Calls vs. Library Routines. 15
2.2 Versions of BSD and OpenBSD. 15
2.3 Error Handling. 16

2.3.1 The errno global variable. 17

3 The Standard I/O Library. 27
3.1 File Pointers. 27
3.2 Opening and Creating Files. 28
3.3 Flushing files. 29
3.4 Closing files. 29
3.5 Reading and Writing Files. 29

3.5.1 The getc and putc Routines. 29
3.5.2 The fgets and fputs Routines. 31
3.5.3 The fread and fwrite Routines. 32
3.5.4 The fscanf and fprintf Routines. 34
3.5.5 The sscanf and sprintf Routines. 36

3.6 Moving Around in Files. 38

4 Low-level I/O. 49
4.1 File Descriptors. 49
4.2 Opening and Creating Files. 50
4.3 Closing Files. 50
4.4 Reading and Writing Files. 51
4.5 Moving Around in Files. 53

4.5.1 Duplicating File Descriptors. 53
4.6 Converting File Descriptors to File Pointers. 54

5 Files and Directories. 55
5.1 File System Concepts. 55

5.1.1 FFS Versions. 56
5.1.2 Blocks, Fragments and i-nodes. 56
5.1.3 Ordinary Files. 57

2

CONTENTS 3

5.1.4 Special files. 58
5.1.5 Removable File Systems. 61
5.1.6 Device Numbers. 61
5.1.7 Hard Links and Symbolic Links. 62

5.2 Determining the Accessibility of a File. 62
5.3 Getting Information from an i-node. 62
5.4 Reading Directories. 64
5.5 Modifying File Attributes. 71
5.6 Miscellaneous File System Routines. 71

5.6.1 Changing Directories. 71
5.6.2 Deleting and Truncating Files. 72
5.6.3 Making Directories. 72
5.6.4 Linking and Renaming Files. 72
5.6.5 Symbolic Links. 73
5.6.6 The umask Value. 73

6 Device I/O Control. 75
6.1 The ioctl System Call. 75
6.2 Line Disciplines. 77

6.2.1 Terminal File Operations. 77
6.2.2 Terminal File Request Descriptions. 78
6.2.3 The winsize Structure. 81
6.2.4 The termios Structure. 82

6.3 The fcntl System Call. 88
6.4 Non-blocking I/O. 90
6.5 The select System Call. 90

7 Information About Users. 93
7.1 The Login Name. 93
7.2 The User Id. 93
7.3 The Group Id. 94

7.3.1 The OpenBSD Group Mechanism. 94
7.4 Reading the Password File. 95
7.5 Reading the Group File. 97
7.6 Reading the /var/run/utmp and /var/log/wtmp Files. 98

8 Time and Timing. 101
8.1 Time. 101

8.1.1 Obtaining the Time. 101
8.1.2 Timezones. 103
8.1.3 Time Differences. 104

8.2 Sleeping and Alarm Clocks. 106
8.2.1 Sleeping. 106
8.2.2 The Alarm Clock. 106

8.3 Process Timing. 107
8.4 Changing File Times. 108
8.5 Interval Timers. 109

9 Processing Signals. 111
9.1 Overview of Signal Handling. 111

9.1.1 The sigaction interface. 112
9.2 The Signals. 113

4 CONTENTS

9.3 Sending Signals. 115
9.4 Catching and Ignoring Signals. 116

9.4.1 Catching Signals. 117
9.5 Using Signals for Timeouts. 119

9.5.1 The setjmp and longjmp Routines. 120
9.6 The OpenBSD Signal Mechanism. 122

9.6.1 The Signal Mask. 122
9.6.2 The Signal Stack. 124

10 Executing Programs 129
10.1 The System Library Routine. 129
10.2 Executing Programs Directly. 130

10.2.1 Creating Processes. 130
10.2.2 Executing Programs. 131
10.2.3 Waiting for Processes to Terminate. 135

10.3 Redirecting Input and Output. 138
10.4 Setting Up Pipelines. 140

10.4.1 The popen Library Routine. 140
10.4.2 Creating Pipes Directly. 140

11 Job Control 143
11.1 Preliminary Concepts. 144

11.1.1 The Controlling Terminal. 144
11.1.2 Process Groups. 144
11.1.3 System Calls. 144
11.1.4 The job and process Data Types. 146
11.1.5 Using kernel to retrieve processes informations. 153

11.2 Job Control in the Shell. 156
11.2.1 Setting Up for Job Control. 156
11.2.2 Executing a Program. 157
11.2.3 Stopping a Job. 157
11.2.4 Backgrounding and Foregrounding a Job. 159
11.2.5 The jobs Command. 161
11.2.6 Waiting for Jobs. 161
11.2.7 Asynchronous Process Notification. 161

11.3 Job Control Outside the Shell. 161
11.4 Important Points. 162

12 Interprocess Communication. 163
12.1 Sockets. 163

12.1.1 The socket System Call. 164
12.1.2 The send and recv System Calls. 165
12.1.3 The listen System Call. 166
12.1.4 The shutdown System Call. 167
12.1.5 The accept System Call. 167
12.1.6 The connect System Call. 167
12.1.7 Connectionless Sockets. 168
12.1.8 The sendto System Call. 168
12.1.9 The recvfrom System Call. 169
12.1.10A Small Client Program. 170
12.1.11A Small Server Program. 171

12.2 Message Queues. 174

CONTENTS 5

12.2.1 The msgget System Call. 175
12.2.2 The msgctl System Call. 176
12.2.3 The msgsnd and msgrcv System Calls. 176

12.3 Semaphores. 181
12.3.1 The semget System Call. 182
12.3.2 The semctl System Call. 183
12.3.3 The semop System Call. 184

12.4 Shared Memory. 185
12.4.1 The shmget System Call. 186
12.4.2 The shmctl System Call. 187
12.4.3 The shmat and shmdt System Calls. 187

13 Networking. 191
13.1 Addresses. 191
13.2 Translating Hostnames Into Network Numbers. 192

13.2.1 The gethostbyname and gethostbyaddr Library Routines. 192
13.3 Obtaining Port Numbers. 194

13.3.1 The getservbyname and getservbyport Library Calls. 194
13.4 Network Byte Order. 196
13.5 Networking System Calls. 196

14 The File System. 201
14.1 Disk Terminology. 201
14.2 The OpenBSD Enhanced Fast File System. 202

14.2.1 The disk label. 203
14.2.2 The file system. 208
14.2.3 Cylinder group related limits. 214
14.2.4 Super-block for a file system. 215
14.2.5 Inodes. 219

15 Miscellaneous Routines. 223
15.1 Resource Limits. 223

15.1.1 The getrlimit and setrlimit System Call. 223
15.2 Obtaining Resource Usage Information. 226
15.3 Manipulating Byte Strings. 229

15.3.1 The bcmp routine. 229
15.3.2 The bcopy routine. 229
15.3.3 The bzero routine. 229
15.3.4 The memcmp routine. 229
15.3.5 The memcpy routine. 230
15.3.6 The memmove routine. 230
15.3.7 The memset routine. 230

15.4 Environment Variables. 230
15.5 The Current Working Directory. 230
15.6 Searching for Characters in Strings. 231
15.7 Determining Whether a File is a Terminal. 231
15.8 Printing Error Messages. 231

15.8.1 The perror routine. 231
15.8.2 The psignal routine. 231
15.8.3 The strerror routine. 232
15.8.4 The strsignal routine. 233

15.9 Sorting Arrays in Memory. 233

6 CONTENTS

A FORTRAN vs C Interoperability. 237

A.1 Data Representation. 237

A.2 Routines Naming. 239

A.2.1 Naming C Routines to be Called from FORTRAN 240

A.2.2 Naming FORTRAN Routines to be Called from C 240

A.3 Returning Values from Functions. 240

A.3.1 Return Values from C Code. 240

A.3.2 Returning Values from FORTRAN 90 Code. 241

A.4 Passing Arguments. 242

A.4.1 Passing Arguments to a C Function. 242

A.4.2 Passing Arguments to a FORTRAN 90 procedure/function. 244

B The Workstation Console Access. 247

B.1 Terminal Emulations. 247

B.2 Generic Display Device Support. 248

B.2.1 The ioctl Interface. 249

B.3 Generic Keyboard Device Support. 256

B.3.1 The ioctl Interface. 256

B.4 Generic Mouse Support. 263

B.4.1 The ioctl interface. 263

B.5 The Console Keyboard/Mouse Multiplexor. 266

B.5.1 The ioctl interface. 266

Index 271

Bibliography 289

CONTENTS 7

Revision # Comment Author Date
0.1 Initial Release Angelo Rossi 28/07/2024
0.2 Adding BSD 3 clause license Angelo Rossi 30/07/2024

Chapter 1

Preface.

Documentation Conventions.
Notes on man on OpenBSD.
Acknowledgements.

This book is intended for the person who wants to become a system programmer for the UNIX-like
operating system OpenBSD1. The most important system calls and library routines provided by
this operating system are discussed and numerous examples of real world applications have been
provided. The main focus of the discussion is on the 7.5 release of OpenBSD which is a 4.4BSD
UNIX derivative. The chapters have been organized in a bottom up fashion, presenting first the
methods and routines for performing simple tasks with basic informations fetched from the specific
man page and then moving on to complex operations that build on the earlier information. At the
end of the chapter or an important section code examples are presented.

• Chapter 1, Licensing., presents some introductory concept and terminology. It also briefly
describes the error handling mechanism used by routines in the Standard I/O Library;

• Chapter 2, The errno global variable., and Chapter 3, Moving Around in Files., present
the high- and low-level input and output mechanism provided for the programmer. Methods
of manipulating ordinary files and directories are described in Chapter 4, Converting File
Descriptors to File Pointers. and operations on special device files are presented in Chapter
5, The umask Value.;

• Chapter 6, The select System Call., describes how to obtain information about the users of
the system.

• Chapter 7, Reading the /var/run/utmp and /var/log/wtmp Files., describes the method for
obtaining the time of the day, as well as how to time various events;

• Chapter 8, Interval Timers., describes both the Berkeley and System V signal and interrupt
mechanism;

• Chapter 9, The Signal Stack., describes methods for executing other programs, including
setting up pipes, and Chapter 10, Creating Pipes Directly., describes job control mechanism
for controlling those programs;

• Chapter 11, Important Points., describes sockets, shared memory, message queues and
semaphore mechanisms;

1OpenBSD

9

http://www.openbsd.org

10 CHAPTER 1. PREFACE.

• Chapter 12, The shmat and shmdt System Calls., describes the mechanisms for intermachine
communication using TCP/IP;

• Chapter 13, Networking System Calls., provides information on the internal organization of
the OpenBSD Fast File System;

• Chapter 14, Inodes., covers a variety of miscellaneous shorter topics, including reading and
setting resource limits, access to environment variables, and use of perror for error handling.

The appendices provide information on some specialized topics that are not often used by the
systems programmer, but are nevertheless good to know. Appendix A presents information on how
to call FORTRAN 90 subroutines from a C program, and vice-versa. Appendix B describes the use
of Workstation Console Access aka wscons. A modest background is required to understand the
material in this book. The reader is expected to be fluent in C programming language ([1]) including
the more advanced concepts such as structures and pointers. Good familiarity with the organization
and use of the UNIX operating system is also a must. Although not necessary, familiarity with data
structures and algorithms such as those used for sorting and searching will be useful. The examples
in the book are really all complete, working programs that should be entered and experimented
with to gain a complete understanding of the material2The reader should know how to use gcc or
clang compiler suites as well as to use the ld linker and the lldb debugger. For the FORTRAN 90
part in Appendix A we recomend g95 fortran compiler.

1.1 Documentation Conventions.

For the most part the conventions followed in this book should be obvious, but for the sake of clarity,
we’ll review them here. This handbook use Italics, Constant-Width and Constant-Italic text
to emphasize special words:

Italics are used for the names of all UNIX utilities, directories and
filenames, and to emphasize new terms and concepts when
they are first introduced.

Constant Width is used for system calls, library routines, sample code
fragments and examples. A referenze in explanatory text to a
word or item used in an example or code fragment is also
shown in constant width font.

Constant Italics are used in code fragments to represent general terms that
requires context-dependent substitution.

function(n) is a reference to a man page3 in section n of the OpenBSD
Manual Page. The command is man -s function. For
example, tty(4) refers to a page called tty in Section 4: man
-s 4 tty.

2If you have an internet access, you need not type in the examples. As you can use git program in your system
to download the material, using the command:

3The man command can show

1.2. NOTES ON MAN ON OPENBSD. 11

1.2 Notes on man on OpenBSD.

The man utility displays the manual page entitled name. Pages may be selected according to a
specific category or section or machine architecture or subsection. Only select manuals from the
specified section. The currently available sections are:

1. general commands such as tools and utilities;

2. system calls and error numbers;

3. library functions

• 3p perl(1) programmer’s reference guide;

4. device drivers;

5. file formats;

6. games;

7. miscellaneous information;

8. system maintenance and operation commands;

9. kernel internals.

1.3 Acknowledgements.

As reference we used material from the books on the bibliography. We would like to thank the
following people:

• Dennis M. Ritchie;

• Brian W. Kernighan;

• Ken Thompson;

• Theo De Raadt;

without them the adventure would never start. Last but not least we would like to thank the reader,
whose patience we hope will be rewarded by learning the material exposed in this work. I would
like to thank the people at ircnow and especially jrmu who never stopped encouraging the release
of this humble work.

1.4 Licensing.

Copyright 2024 Angelo Rossi <angelo.rossi.homelab@gmail.com>

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice,

this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the

documentation and/or other materials provided with the distribution.

mailto:angelo.rossi.homelab@gmail.com

12 CHAPTER 1. PREFACE.

3. Neither the name of the copyright holder nor the names of its

contributors may be used to endorse or promote products derived from

this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Chapter 2

Introduction.

System Calls vs. Library Routines.
Versions of BSD and OpenBSD.
Error Handling.

Over the past several years, the use of the UNIX and UNIX-like operating systems and specifically
OpenBSD has become widespread for server, workstation and personal computers. This is due
mainly to the following factors:

1. the UNIX philosophy emphasizes building simple, compact, clear, modular, and extensible
code that can be easily maintained and repurposed by developers other than its creators. It
favors composability as opposed to monolithic design;

2. cheaper hardware with massive computational capabilities well suits the UNIX philosophy
stated at the previous point; UNIX can be easily adapted to a variety of cpu architectures.
OpenBSD can run on the following cpus1:

a) alpha — Digital Alpha-based systems;

b) amd64 — AMD64-based systems;

c) arm64 — 64-bit ARM systems;

d) armv7 — ARM based devices, such as BeagleBone, PandaBoard, CuBox-i, SABRE Lite,
Nitrogen6x and Wandboard;

e) hppa — Hewlett-Packard Precision Architecture (PA-RISC) systems;

f) i386 — Standard PC and clones based on the Intel i386 architecture and compatible
processors;

g) landisk — IO-DATA Landisk systems (such as USL-5P) based on the SH4 cpu loongson
Loongson 2E- and 2F-based systems, such as the Lemote Fuloong and Yeeloong, Gdium
Liberty, etc.;

h) luna88k — Omron LUNA-88K and LUNA-88K2 workstations;

i) macppc — Apple New World PowerPC-based machines, from the iMac onwards;

j) octeon — Cavium Octeon-based;

k) MIPS64 — systems;

l) powerpc64 — IBM POWER-based;

m) PowerNV — systems;

1See OpenBSD Platforms

13

https://www.openbsd.org/plat.html

14 CHAPTER 2. INTRODUCTION.

n) riscv64 — 64-bit RISC-V systems

o) sparc64 — Sun SPARC (Scalable Processor ARChitecture).

3. the opensource initiative which delivered and still is delivering, outstanding high quality soft-
ware;

4. embedded computing and mobile devices are used to build cheaper and smarter portable
computers. Operating Systems like UNIX and then OpenBSD are playing a central role in
provide development platforms and services for this kind of computing devices2.

In particular OpenBSD offers a lot of features such as: code correctness and advanced security
for server or client use. Most of the open source projects such like OpenSMTPD, OpenSSH, etc
are part of this project. Several books have been published on the use of OpenBSD and on the
use of the C programming language, which is the primary language used in UNIX and of course
in OpenBSD3. As a result, those wanting to write system programs under this operating system
have had to learn the hard way: examining the source code of existing system utilities4. That is
a good way to understand and discover things since one of the main strength of OpenBSD is the
code correctness. This leads to acquire the way to do things within the system itself, leaving less
space to bad implementations and bugs. The system provide, by design, the source code for ports,
system utilities and programs like Xenocara5 and the kernel. This book is an attempt to enhance
the learning process for a beginner user: it discusses in details the use of most of the system calls
and library routines available to the C programmer on the OpenBSD operating system. It is not
intended as an introduction to the C programming language, nor can it really be considered an
advanced C programming guide. Rather, it has been written for the person interested in learning
to become a system programmer for the OpenBSD operating system. The student who wishes to
work for a university computer center, a system programmer unfamiliar with UNIX and OpenBSD
who must now write a program for such system and finally the researcher interested in writing
his own tool to perform his work will find material presented in this book useful. The reader is
expected to be fluent in C programming, including the more advanced concepts such as structures
and pointers. The ideal reader will have been programming C for at least one year, and will have
had at least a minimal introduction to data structures and computer algorithms such as those used
for sorting and searching. Additionally the reader should know how:

1. to install programs and utilities using the package manager or ports;

2. to compile C programs using gcc, clang, the linker ld;

3. to debug programs using gdb or lldb;

4. to use a text editor such as GNU Emacs6;

on OpenBSD. A junior in a college-level computer sciences curriculum should have no trouble
with the concepts presented here. Throughout this book small, heavily commented example have
been provided to demonstrate how the various routines being discussed are actually used. The
reader will benefit by actually typing these examples in, compiling them, executing them and then
experimenting with them in order to observe first-hand how they operate.

2The Reader could consider the success of the TI BeagleBone or the Raspberry PI. Unlike the Arduino, these
embedded computing solutions can run a complete OS such as OpenBSD.

3The kernel is largely written in C and assembly language for different computing architectures.
4Usually OpenBSD installs source code in /usr/src for the system utilities and kernel and under /usr/ports the

program and utilities ported from other projects.
5Xenocara is the X11 graphical server.
6GNU Emacs

https://www.gnu.org/software/emacs/

2.1. SYSTEM CALLS VS. LIBRARY ROUTINES. 15

2.1 System Calls vs. Library Routines.

Before discussing the library routines and system calls provided by OpenBSD system, a few words
must be said. First the difference between a system call and a library routine needs to been
explained. These terms are often used incorrectly: a system call is just what its name implies -
a request for the operating system to do something on behalf of the user’s program. For
example read is a system call which ask the operating system to fill a buffer with data stored on
a disk drive or other device. Since great chaos would result if everyone were able to access devices
whenever they pleased, this service must be requested dealing which each device. A library routine,
on the other hand, does not usually need the operating system to perform its work. An
example of a library routine is the sin function, which computes the sine of an angle expressed in
radians. Since this is done simply by summing a finite series, the operating system is not needed.
In order to avoid confusion when the difference is unimportant, this book will use the word routine
to describe either a system call or a library routine.

2.2 Versions of BSD and OpenBSD.

The main focus of the book is on the OpenBSD 7.5 release which is a derivative of the 4.4BSD
UNIX from University of California at Berkeley7. The most influential of the non-Bell Laboratories
and not-AT&T UNIX development groups was the University of California at Berkeley [2]. Software
from Berkeley is released in Berkeley Software Distribution (BSD) - for example, as 4.3BSD.
The first Berkeley VAX UNIX work was the addition to 32V of virtual memory, demand paging, and
page replacement in 1979 by William Joy and Ozalp Babaoglu, to produce 3BSD. The reason for the
large virtual memory space of 3BSD was the development of what at the time were large programs,
such as Berkeley’s Franz LISP. This memory management work convinced the Defence Advanced
Research Projects Agency (DARPA) to fund the Berkeley team for the later development of a
standard system (4BSD) for DARPA’s contractors to use. A goal of the 4BSD project was to provide
support for the DARPA Internet networking protocols, TCP/IP. The networking implementation
was general enough to communicate among diverse network facilities, ranging from local networks,
such as Ethernets and token rings, to long-haul networks, such as DARPA’s ARPANET. The 4BSD
work for DARPA was guided by a steering committe that included many notable people from both
commercial and academic institutions. The culmination of the original Berkeley DARPA UNIX
project was the release of 4.2BSD in 1983; further research at Berkeley produced 4.3BSD in mid-
1986, The next releases included the 4.3BSD Tahoe release of June 1988 and the 4.3BSD Reno
release of June 1990. These releases were primarily ports to the Computer Consoles Incorporated
hardware platform. Interleaved with these releases were two unencumbered networking releases:
4.3BSD Net1 release of March 1989 and the 4.3BSD Net2 release of the June 1991. These releases
extracted nonproprietary code from 4.3BSD; they could be redistributed freely in source and binary
form to companies that and individuals who were not covered by a UNIX source license. The final
CSRG release was to have been two version of 4.4BSD, released in June 1993. One was to have
been a traditional full source and binary distribution, called 4.4BSD-Encumbered, that required
the recipient to have a UNIX source license. The other was to have been a subset of the source,
called 4.4BSD-Lite, that contained no licensed code and did not require the recipient to have a
UNIX source license. We arrive to the first version of NetBSD (0.8) which dates back to 1993 and
comes from the 4.3BSD-Lite operating system and from the 386BSD system, the first BSD port
to the Intel 386 CPU. In the following years, 1994, modifications from the 4.4BSD-Lite release,
the last release from the Berkeley group, were integrated into the system. The BSD branch of
UNIX has had a great importance and influence on the history of UNIX-like operating systems,
to which it has contributed many tools, ideas and improvements which are now standard: the vi
editor, the C shell, job control, the Berkeley Fast File System, reliable signals, support for virtual

7OpenBSD was forked by NetBSD which is a 4.4 BSD UNIX derivative.

16 CHAPTER 2. INTRODUCTION.

memory and TCP/IP, just to name a few. This tradition of research and development survives
today in the BSD systems and, in particular, in OpenBSD. In December 1994, Theo de Raadt, a
founding member of the NetBSD project, resigned from the core team and in October 1995, he
founded OpenBSD, a new project forked from NetBSD 1.0. The initial release, OpenBSD 1.2, was
made in July 1996, followed by OpenBSD 2.0 in October of the same year. Since then, the project
has issued a release every six months, each of which is supported for one year. The OpenBSD
project produces a freely available, multi-platform 4.4BSD-based UNIX-like operating system. It
places emphasis on correctness, security, standardization, and portability. OpenBSD runs on many
different hardware platforms and is thought of as the most secure UNIX-like operating system
by many security professionals, as a result of the never-ending comprehensive source code audit.
OpenBSD is a full-featured UNIX-like operating system available in source and binary form at
no charge. It integrates cutting-edge security technology suitable for building firewalls and private
network services in a distributed environment. OpenBSD sources and binary are free and all its parts
have reasonable copyright terms permitting free redistribution. The current, May 2024, version of
OpenBSD is the 7.5.

2.3 Error Handling.

Error conditions appear when the program perform one or more actions which are not allowed by
the system. Programs are in fact lists of instructions which are sequentially executed8. Those
instructions must comply to rules, within the operating system, to perform the task for which they
are designed. For example let’s consider the following example: a program wants to open a file on
the disk for writing and store in it 256 MB of data in it, but the disk is full, which is a condition
not depending by the program itself, we can say that it is an external factor. As the program
tries to write those data, the operating system signals the problem and generates an error, forcing
the program to abort the operation. Usually the operating system signals the error, after aborting
the requested operation, by placing a numerical code in memory by storing it in a system-wide
accessible variable and/or make the called routine returns that code to the program. All of the
routines in the Standard I/O Library9 return one of the predefined constants EOF or NULL when an
error occurs. Other library routines usually return either -1 or 0 on error, depending on what the
type of their return value is, altough some routines may return different values indicating one of
several different errors. Unlike library routines, system calls are identical in the way they indicate
that an error has occurred. Every system call returns the value -1 when an error occurs, and most
return 0 on successfull completion, unless they are returning some other integer value. Further, the
external integer errno10 is set to a number indicating exactly which error occurred. The values
of these errors are defined in the include file <errno.h> and may be easily printed out using the
perror library routine, described in 15.8.1. On OpenBSD when a system call detects an error,
it returns an integer value indicating failure, usually -1, and sets the variable errno accordingly.
This allows interpretation of the failure on receiving a -1 and to take action accordingly. Successful
calls never set errno; once set, it remains until another error occurs. It should only be examined
after an error. Note that a number of system calls overload the meanings of these error numbers
and that the meanings must be interpreted according to the type and circumstances of the call.
Errors are important. Good programs are those that do not die a horrible death in the face of
an unexpected error. According to Murphy’s Law: if anything could go wrong, it will. Programs
should be prepared for this inevitability by checking the return codes from all systems calls and
library routines whose failure will cause problems and act accordingly. Nonetheless, in order to
save space and emphasize the important parts of the code, many of the examples in this book do

8We can apply this even to a multitasking system in which threads could be considered standalone programs
which execute their own instructions lists.

9See stdio(3).
10See errno (2)

2.3. ERROR HANDLING. 17

not always check return codes as should be done in real life. The examples should be taken as
demonstrations of the concepts being discussed, not as complete tools.

2.3.1 The errno global variable.

In the <errno.h> include file are defined the following possible values for the errno variable:

Table 2.1: List of errors.

Name Value strerror output Explanation

Undefined Error 0 Undefined Error -

EPERM 1 Operation not per-
mitted

An attempt was made to perform
an operation limited to processes
with appropriate privileges or to
the owner of a file or other re-
sources

ENOENT 2 No such file or direc-
tory

A component of a specified path-
name did not exist, or the path-
name was an empty string

ESRCH 3 No such process
No process could be found which
corresponds to the given process
ID

EINTR 4 Interrupted system
call

An asynchronous signal, such as
SIGINT or SIGQUIT, was caught
by the thread during the execu-
tion of an interruptible function. If
the signal handler performs a nor-
mal return, the interrupted func-
tion call will seem to have returned
the error condition;

EIO 5 Input/output error

Some physical input or output er-
ror occurred. This error will not
be reported until a subsequent op-
eration on the same file descriptor
and may be lost (overwritten) by
any subsequent errors;

ENXIO 6 Device not config-
ured

Input or output on a special file
referred to a device that did not
exist, or made a request beyond
the limits of the device. This error
may also occur when, for example,
a tape drive is not online or no disk
pack is loaded on a drive

E2BIG 7 Argument list too
long

The number of bytes used for the
argument and environment list of
the new process exceeded the limit
ARG_MAX

18 CHAPTER 2. INTRODUCTION.

Table 2.1: List of errors.

Name Value strerror output Explanation

ENOEXEC 8 Exec format error

A request was made to execute a
file that, although it has the appro-
priate permissions, was not in the
format required for an executable
file

EBADF 9 Bad file descriptor

A file descriptor argument was out
of range, referred to no open file,
or a read (write) request was made
to a file that was only open for
writing (reading)

ECHILD 10 No child processes

A wait, waitid, or waitpid
function was executed by a process
that had no existing or unwaited-
for child processes

EDEADLK 11 Resource deadlock
avoided

An attempt was made to lock a
system resource that would have
resulted in a deadlock situation

ENOMEM 12 Cannot allocate
memory

The new process image required
more memory than was allowed
by the hardware or by system-
imposed memory management
constraints. A lack of swap
space is normally temporary;
however, a lack of core is not.
Soft limits may be increased to
their corresponding hard limits

EACCES 13 Permission denied
An attempt was made to access a
file in a way forbidden by its file
access permissions

EFAULT 14 Bad address
The system detected an invalid ad-
dress in attempting to use an ar-
gument of a call

ENOTBLK 15 Block device re-
quired

A block device operation was at-
tempted on a non-block device or
file

EBUSY 16 Device busy

An attempt to use a system re-
source which was in use at the time
in a manner which would have con-
flicted with the request

EEXIST 17 File exists

An existing file was mentioned in
an inappropriate context, for in-
stance, as the new link name in a
link(2) function

2.3. ERROR HANDLING. 19

Table 2.1: List of errors.

Name Value strerror output Explanation

EXDEV 18 Cross-device link A hard link to a file on another file
system was attempted

ENODEV 19 Operation not sup-
ported by device

An attempt was made to apply an
inappropriate function to a device,
for example, trying to read a write-
only device such as a printer

ENOTDIR 20 Not a directory

A component of the specified
pathname existed, but it was not
a directory, when a directory was
expected

EISDIR 21 Is a directory An attempt was made to open a
directory with write mode specified

EINVAL 22 Invalid argument

Some invalid argument was sup-
plied. For example, specifying an
undefined signal to a signal(3) or
kill(2) function

ENFILE 23 Too many open files
in system

Maximum number of file de-
scriptors allowable on the sys-
tem has been reached and a re-
quest for an open cannot be sat-
isfied until at least one has been
closed. The sysctl(2) variable
kern.maxfiles contains the current
limit

EMFILE 24 Too many open files

The maximum number of file de-
scriptors allowable for this process
has been reached and a request for
an open cannot be satisfied until at
least one has been closed. getdta-
blesize(3) will obtain the current
limit

ENOTTY 25 Inappropriate ioctl
for device

A control function, see ioctl, was
attempted for a file or special de-
vice for which the operation was
inappropriate

ETXTBSY 26 Text file busy

An attempt was made either to
execute a pure procedure, shared
text, file which was open for writ-
ing by another process, or to open
with write access a pure procedure
file that is currently being executed

20 CHAPTER 2. INTRODUCTION.

Table 2.1: List of errors.

Name Value strerror output Explanation

EFBIG 27 File too large

The size of a file exceeded the
maximum. The system-wide maxi-
mum file size is 263 bytes. Each file
system may impose a lower limit
for files contained within it

ENOSPC 28 No space left on de-
vice

A write to an ordinary file, the
creation of a directory or sym-
bolic link, or the creation of a
directory entry failed because no
more disk blocks were available on
the file system, or the allocation
of an i-node for a newly created
file failed because no more i-nodes
were available on the file system

ESPIPE 29 Illegal seek An lseek function was issued on
a socket, pipe or FIFO

EROFS 30 Read-only file sys-
tem

An attempt was made to modify a
file or create a directory on a file
system that was read-only at the
time

EMLINK 31 Too many links

The maximum allowable number
of hard links to a single file has
been exceeded, see pathconf for
how to obtain this value

EPIPE 32 Broken pipe
A write on a pipe, socket or FIFO
for which there is no process to
read the data

EDOM 33 Numerical argument
out of domain

A numerical input argument was
outside the defined domain of the
mathematical function

ERANGE 34 Result too large
A result of the function was too
large to fit in the available space,
perhaps exceeded precision

EAGAIN 35 Resource temporar-
ily unavailable

This is a temporary condition and
later calls to the same routine may
complete normally

EINPROGRESS 36 Operation now in
progress

An operation that takes a long
time to complete, such as a
connect, was attempted on a
non-blocking object, see fcntl

EALREADY 37 Operation already in
progress

An operation was attempted on a
non-blocking object that already
had an operation in progress

2.3. ERROR HANDLING. 21

Table 2.1: List of errors.

Name Value strerror output Explanation

ENOTSOCK 38 Socket operation on
non-socket Self-explanatory

EDESTADDRREQ 39 Destination address
required

A required address was omitted
from an operation on a socket

EMSGSIZE 40 Message too long
A message sent on a socket was
larger than the internal message
buffer or some other network limit

EPROTOTYPE 41 Protocol wrong type
for socket

A protocol was specified that does
not support the semantics of the
socket type requested. For ex-
ample, you cannot use the In-
ternet UDP protocol with type
SOCK_STREAM

ENOPROTOOPT 42 Protocol not avail-
able

A bad option or level was specified
in a getsockopt or setsockopt
call

EPROTONOSUPPORT 43 Protocol not sup-
ported

The protocol has not been config-
ured into the system or no imple-
mentation for it exists

ESOCKTNOSUPPORT 44 Socket type not sup-
ported

The support for the socket type
has not been configured into the
system or no implementation for it
exists

EOPNOTSUPP 45 Operation not sup-
ported

The attempted operation is not
supported for the type of object
referenced. Usually this occurs
when a file descriptor refers to a
file or socket that cannot support
this operation, for example, trying
to accept a connection on a data-
gram socket

EPFNOSUPPORT 46 Protocol family not
supported

The protocol family has not been
configured into the system or no
implementation for it exists

EAFNOSUPPORT 47
Address family not
supported by proto-
col family

An address incompatible with the
requested protocol was used. For
example, you shouldn’t necessarily
expect to be able to use NS ad-
dresses with Internet protocols

EADDRINUSE 48 Address already in
use

Only one usage of each address is
normally permitted

EADDRNOTAVAIL 49 Can’t assign re-
quested address

Normally results from an attempt
to create a socket with an address
not on this machine

22 CHAPTER 2. INTRODUCTION.

Table 2.1: List of errors.

Name Value strerror output Explanation

ENETDOWN 50 Network is down A socket operation encountered a
dead network

ENETUNREACH 51 Network is unreach-
able

A socket operation was attempted
to an unreachable network

ENETRESET 52 Network dropped
connection on reset

The host you were connected to
crashed and rebooted

ECONNABORTED 53 Software caused
connection abort

A connection abort was caused in-
ternal to your host machine

ECONNRESET 54 Connection reset by
peer

A connection was forcibly closed
by a peer. This normally results
from a loss of the connection on
the remote socket due to a time-
out or a reboot

ENOBUFS 55 No buffer space
available

An operation on a socket or
pipe was not performed because
the system lacked sufficient buffer
space or because a queue was full

EISCONN 56 Socket is already
connected

A connect request was made on
an already connected socket; or, a
sendto or sendmsg request on a
connected socket specified a desti-
nation when already connected

ENOTCONN 57 Socket is not con-
nected

A request to send or receive data
was disallowed because the socket
was not connected and, when
sending on a datagram socket, no
address was supplied

ESHUTDOWN 58 Can’t send after
socket shutdown

A request to send data was disal-
lowed because the socket had al-
ready been shut down with a pre-
vious shutdown call

ETOOMANYREFS 59 Too many refer-
ences: can’t splice Not used in OpenBSD

ETIMEDOUT 60 Operation timed out

A connect or send request failed
because the connected party did
not properly respond after a pe-
riod of time. The timeout period is
dependent on the communication
protocol

ECONNREFUSED 61 Connection refused

No connection could be made be-
cause the target machine actively
refused it. This usually results
from trying to connect to a service
that is inactive on the foreign host

2.3. ERROR HANDLING. 23

Table 2.1: List of errors.

Name Value strerror output Explanation

ELOOP 62 Too many levels of
symbolic links

A pathname lookup involved more
than 32 (SYMLOOP_MAX) symbolic
links

ENAMETOOLONG 63 File name too long

A component of a pathname ex-
ceeded 255 (NAME_MAX) charac-
ters, or an entire pathname (in-
cluding the terminating NUL) ex-
ceeded 1024 (PATH_MAX) bytes

EHOSTDOWN 64 Host is down A socket operation failed because
the destination host was down

EHOSTUNREACH 65 No route to host A socket operation was attempted
to an unreachable host

ENOTEMPTY 66 Directory not empty
A directory with entries other than
‘.’ and ‘..’ was supplied to a re-
move directory or rename call

EPROCLIM 67 Too many processes Self-explanatory

EUSERS 68 Too many users The quota system ran out of table
entries

EDQUOT 69 Disk quota exceeded

A write to an ordinary file, the
creation of a directory or sym-
bolic link, or the creation of a
directory entry failed because the
user’s quota of disk blocks was ex-
hausted, or the allocation of an i-
node for a newly created file failed
because the user’s quota of i-nodes
was exhausted

ESTALE 70 Stale NFS file handle

An attempt was made to access
an open file on an NFS file system
which is now unavailable as refer-
enced by the file descriptor. This
may indicate the file was deleted
on the NFS server or some other
catastrophic event occurred

EREMOTE 71 Too many levels of
remote in path Self-explanatory

EBADRPC 72 RPC struct is bad Exchange of rpc information was
unsuccessful

ERPCMISMATCH 73 RPC version wrong
The version of rpc on the remote
peer is not compatible with the lo-
cal version

EPROGUNAVAIL 74 RPC program not
available

The requested rpc program is not
registered on the remote host

24 CHAPTER 2. INTRODUCTION.

Table 2.1: List of errors.

Name Value strerror output Explanation

EPROGMISMATCH 75 Program version
wrong

The requested version of the rpc
program is not available on the re-
mote host

EPROCUNAVAIL 76 Bad procedure for
program

An rpc call was attempted for a
procedure which doesn’t exist in
the remote program

ENOLCK 77 No locks available
A system-imposed limit on the
number of simultaneous file locks
was reached

ENOSYS 78 Function not imple-
mented

Attempted a system call that is not
available on this system

EFTYPE 79 Inappropriate file
type or format

The file contains invalid data or set
to invalid modes

EAUTH 80 Authentication error
Attempted to use an invalid au-
thentication ticket to mount a
NFS filesystem

ENEEDAUTH 81 Need authenticator
An authentication ticket must be
obtained before the given NFS file
system may be mounted

EIPSEC 82 IPsec processing fail-
ure

IPsec subsystem error. Not used
in OpenBSD

ENOATTR 83 Attribute not found A UFS Extended Attribute is not
found for the specified pathname

EILSEQ 84 Illegal byte sequence An illegal sequence of bytes was
used when using wide characters

ENOMEDIUM 85 No medium found Attempted to use a removable me-
dia device with no medium present

EMEDIUMTYPE 86 Wrong medium type
Attempted to use a removable me-
dia device with incorrect or incom-
patible medium

EOVERFLOW 87 Value too large to be
stored in data type

A numerical result of the function
was too large to be stored in the
caller provided space

ECANCELED 88 Operation canceled The requested operation was can-
celed

EIDRM 89 Identifier removed
An IPC identifier was removed
while the current thread was wait-
ing on it

ENOMSG 90 No message of de-
sired type

An ipc message queue does not
contain a message of the desired
type, or a message catalog does
not contain the requested message

2.3. ERROR HANDLING. 25

Table 2.1: List of errors.

Name Value strerror output Explanation

ENOTSUP 91 Not supported The operation has requested an
unsupported value

EBADMSG 92 Bad message A corrupted message was detected

ENOTRECOVERABLE 93 State not recover-
able

The state protected by a robust
mutex is not recoverable

EOWNERDEAD 94 Previous owner died
The owner of a robust mutex ter-
minated while holding the mutex
lock

EPROTO 95 Protocol error A device-specific protocol error oc-
curred

In the 15.8.3 subsection it is showed a way to print out the errors names along their codes.

Chapter 3

The Standard I/O Library.

File Pointers.
Opening and Creating Files.
Flushing files.
Closing files.
Reading and Writing Files.
Moving Around in Files.

A programmer learning C is forced to use the routines in the Standard I/O Library, called stdio, to
perform simple input and output from console, in order to write programs that can interact with
a user. In fact these are the first routines that we would learn reading the book from Brian W.
Kernighan and Dennis M. Ritchie on C programming language ([1]). These routines perform three
important functions:

• buffering – is performed automatically. Rather than reading or writing data a few bytes at
a time, the routines perform the actual input or output in large chunks of several thousand
bytes at time. The size of the buffer is generally specified by the constant BUFSIZ, defined
in the include file <stdio.h>. The routines seem to read or write in a small units, but the
data is actually saved in a buffer. This buffering is internal to the routines, and is invisible
to the programmer;

• input and output conversions – are perfomed. For example, when using the printf1 routine
to print an integer, with %d, the character representation of that integer is actually printed.
Similarly, when using scanf2, the character representation of an integer is converted into its
numeric value;

• input and output are automatically formatted – that is, it is possible to use field widths and
the like to print numbers and strings in any desired format.

This chapter provides a review of the more commonly used routines contained in the Standard I/O
Library.

3.1 File Pointers.

In the Standard I/O Library, a file is called a stream, it is described by a pointer to an object of type
FILE, called a file pointer . The FILE data type is defined in the the file <stdio.h>, which has to

1See printf (3).
2See scanf (3).

27

28 CHAPTER 3. THE STANDARD I/O LIBRARY.

be included3 before using any of the stdio routines. There are three predefined file pointers: stdin,
stdout and stderr. These refer to the standard input, the console, the standard output which is
the terminal screen and the standard error stream respectively their documentation could be found
in stdin(3). Most of the stdio routines require that a file pointer referring to an open stream be
passed to them. However, when reading from the standard input or writing to the standard output,
stdio provides shorthand routines that assume one of these streams rather than requiring them to
be specified. Table 3.1 shows these routines.

Shorthand Equivalent

getchar() fgetc(stdin),getc(stdin)

gets(buf) fgets(buf,BUFSIZ,stdin)

printf(args) fprintf(stdout,args)

putchar(c) fputc(c,stdout),putc(c,stdout)

puts(buf) fputs(buf, stdout)

scanf(args) fscanf(stdin,args)

Table 3.1: Shorthand routines for standard input and output.

3.2 Opening and Creating Files.

In order to read from or write to a stream, this must first be opened for the desired operation. The
fopen4 routine is used for this purpose. It takes two arguments: a character string containing the
complete path name of the file to open and a character string describing how that file should be
opened. It returns a pointer to and open stream of type FILE or the constant NULL if the stream
could not be opened. The second argument to fopen may take on one of the following string
values:

"r" or "rb" open file for reading;

"r+" or "rb+", "r+b" open for reading and writing;

"w" or "wb" open for writing. The file is created if it does not exist, otherwise it is truncated;

"w+" or "wb+", "w+b" open for reading and writing. The file is created if it does not exist,
otherwise it is truncated;

"a" or "ab" open for writing. The file is created if it does not exist;

"a+" or "ab+", "a+b" open for reading and writing. The file is created if it does not exist.

The letter "b" in the mode strings above is strictly for compatibility with ANSI X3.159-1989 ("ANSI
C89") and has no effect; the "b" is ignored. After any of the above prefixes, the mode string can
also include zero or more of the following:

"e" the close-on-exec flag is set on the underlying file descriptor of the new file;

"x" if the mode string starts with "w" or "a" then the function shall fail if the file specified
by path already exists, as if the O_EXCL flag was passed to the open(2) function. It
has no effect if used with fdopen() or the mode string begins with "r".

3using the directive #include <stdio.h> at the top of the C program.
4See fopen(3).

3.3. FLUSHING FILES. 29

3.3 Flushing files.

Sometimes it is important to flush data from the buffer especially during critical code execution or
errors. To force a flush of data present in the stdio buffer two routines could be used: fflush and
fpurge. The function fflush forces a write of all buffered data for the given output or update
stream via the stream’s underlying write function. The open status of the stream is unaffected.
If the stream argument is NULL, fflush flushes all open output streams. The function fpurge
erases any input or output buffered in the given stream. For output streams this discards any
unwritten output. For input streams this discards any input read from the underlying object but
not yet obtained via getc(3); this includes any text pushed back via ungetc(3).

3.4 Closing files.

The fclose5 routine is used to close an open stream. fclose takes a single argument, the file
pointer referring to the stream to be closed. When called, this routine flushes the buffers for the
stream and performs some other internal cleanup functions. 0 is returned on success; the constant
EOF is returned if an error occurs.

3.5 Reading and Writing Files.

The Standard I/O Library provides several ways to read and write data to and from a file.

3.5.1 The getc and putc Routines.

The simplest way to read and write data is one character or byte at a time. This is done by using
the getc6 and putc7 routines. getc accepts a single argument, a file pointer referring to a stream
open for reading. It returns the next character read from the stream, or the constant EOF when
the end of file has been reached. putc accepts two arguments, a character to be written and a file
pointer referring a stream open for writing. It places that character onto the stream and returns 0
if it succeeds or EOF if an error occurs. Listing 3.1 shows a small program that appends one file
onto another. The first argument specifies the name of the file to be copied, and the second file
specifies the name of a file to be appended to. If the file to be appended to does not exist, it will
be created.

Listing 3.1: append-char - append one file to another character by character.

1 /* -*- mode: c-mode; -*- */
2
3 /* append -char.c file. */
4 #include <stdio.h>
5 #include <stdlib.h>
6
7 /* append -char program. */
8 /* Functions prototypes. */
9 int main(int , char *[]);

10
11 /* Main function. */
12 int main(int argc , char *argv [])
13 {

5See fclose(3).
6See getc(3).
7See putc(3).

30 CHAPTER 3. THE STANDARD I/O LIBRARY.

14 int c;
15 long int ret = EXIT_FAILURE;
16 FILE *from , *to;
17
18 /* Check our arguments. */
19 if(argc == 3) {
20
21 /* Open the from -file for reading. */
22 if((from = fopen(argv[1], "r")) != NULL) {
23
24 /*
25 * Open the to-file for appending. If to-file does
26 * not exist , fopen will create it.
27 */
28 if((to = fopen(argv[2], "a")) != NULL) {
29
30 /*
31 * Now read characters from from -file until we
32 * hit end -of-file , and put them onto to-file.
33 */
34 while((c = getc(from)) != EOF)
35 putc(c, to);
36
37 /* Now close the output file. */
38 if(fclose(to) == 0)
39 ret = EXIT_SUCCESS;
40 else
41 perror("Error␣closing␣output␣file");
42 } else
43 perror(argv[2]);
44
45 /* Now close the input file. */
46 fclose(from);
47 } else
48 perror(argv[1]);
49 } else
50 fprintf(stderr , "usage:␣%s␣from -file␣to -file\n", *argv);
51 exit(ret);
52 }
53
54 /* End of append -char.c file. */

For brevity and to emphasize the information being discussed in this chapter, Listing 3.1 and the
following examples, violates one of the more important UNIX conventions. This convention dictates
that in any program where it makes sense, the program should operate on both named
files or on its standard input and output. The text formatting programs cat, egrep, tbl and
eqn, to name a few, are good examples of programs that do this. Given a list of file names, these
programs will open the files and process the data in them. However, if no file names are given,
these programs will read data from their standard input. This allows the programs to operate as
filters, so they can be invoked individually or as a part pipeline, see Chapter 9, The Signal Stack..

3.5. READING AND WRITING FILES. 31

3.5.2 The fgets and fputs Routines.

Another way to read and write files provided by the Standard I/O Library allows the programmer to
process data a line at the time. A line is defined by a string of zero or more characters terminated by
a new-line character ’\n’8. The fgets9 function accept three arguments: a pointer to a character
buffer to be filled, an integer specifying the size of the buffer and a file pointer referring to a stream
open for reading. A pointer to the filled buffer is returned on success or the constant NULL is
returned when end-of-file, EOF, is reached. The buffer will be filled with one line of characters,
including the new-line, ’\n’, character and will be terminated with a null character, ’\0’. fputs10

accepts two arguments, a pointer to a null-terminated string of characters and a file pointer referring
to a stream open for writing. It returns 0 on success, or the constant EOF if an error occurs. Listing
3.2 shows another version of our program to append one file to another; this version does it a line
at a time. The constant BUFSIZ is defined in the include file <stdio.h> and is configured to be an
optimum size for the system. Unless you need a particular size, this is a good value to use whenever
you are working with stdio.

Listing 3.2: append-line - append one file to another line by line.
1 /* -*- mode: c-mode; -*- */
2
3 /* append -line.c file. */
4 #include <stdio.h>
5 #include <stdlib.h>
6
7 /* append -line program. */
8 /* Functions prototype. */
9 int main(int , char *[]);

10
11 /* Main function. */
12 int main(int argc , char *argv [])
13 {
14 FILE *from , *to;
15 char line[BUFSIZ];
16 long int ret = EXIT_FAILURE;
17
18 /* Check our arguments. */
19 if(argc == 3) {
20
21 /* Open the from -file for reading. */
22 if((from = fopen(argv[1], "r")) != NULL) {
23
24 /*
25 * Open the to-file for appending. If to-file does
26 * not exist , fopen will create it.
27 */
28 if((to = fopen(argv[2], "a")) != NULL) {
29
30 /*
31 * Now read a line at a time from from -file
32 * and write it to the to-file.

8A typical example of such a file is /usr/share/dict/words which holds an english words dictionary. See the
example code in listing 3.9.

9See fgets(3).
10See fputs(3).

32 CHAPTER 3. THE STANDARD I/O LIBRARY.

33 */
34 while(fgets(line , BUFSIZ , from) != NULL)
35 fputs(line , to);
36
37 /* Now close output file. */
38 fclose(to);
39
40 /* Signal no errors to the shell. */
41 ret = EXIT_SUCCESS;
42 } else
43 perror(argv[2]);
44
45 /* Now close input file. */
46 fclose(from);
47 } else
48 perror(argv[1]);
49 } else
50 fprintf(stderr , "usage:␣%s␣from -file␣to -file\n", *argv);
51 exit(ret);
52 }
53
54 /* End of append -line.c file. */

3.5.3 The fread and fwrite Routines.

The Standard I/O Library also provides a method to read and write data without dividing it up into
characters or lines. This is usually desirable when working with files that do not consist only of text,
but also include arbitrary binary data. The fread11 function accepts four arguments: a pointer to
an array of some data type12, an integer indicating the size of one array element in bytes, an integer
indicating the number of array elements to read and a file pointer referring to a stream open for
reading. It returns the number of array elements actually read in, or 0 on end-of-file. The fwrite13

function also accepts four arguments, as described above for fread. It returns the number of array
elements actually written, or 0 on error. The advantage to using a routine like fread and fwrite
lies primarily in the ability to impose a structure on the input or output stream not provided by the
stdio routines themselvers. For example, if a file contains 100 binary floating-point numbers, the
easiest way to read these in would be to use something like the code segment shown below:

FILE *fp;
float numbers[100];

......

fread(numbers , sizeof(float), 100, fp);

......

Listing 3.3 shows still another version of our file appending program; this version copies the data a
buffer-full of characters at a time.

11See fread(3).
12Could be an array of characters, integers, structures and so on.
13See fwrite(3).

3.5. READING AND WRITING FILES. 33

Listing 3.3: append-buf - append one file to another buffer-full at a time.

1 /* -*- mode: c-mode; -*- */
2
3 /* append -buf.c file. */
4 #include <stdio.h>
5 #include <stdlib.h>
6
7 /* append -buf program. */
8 /* Functions prototypes. */
9 int main(int , char *[]);

10
11 /* The main function. */
12 int main(int argc , char *argv [])
13 {
14 int n;
15 FILE *from , *to;
16 char buf[BUFSIZ];
17 long int ret = EXIT_FAILURE;
18
19 /* Check our arguments. */
20 if(argc == 3) {
21
22 /* Open the from -file for reading. */
23 if((from = fopen(argv[1], "r")) != NULL) {
24
25 /*
26 * Open the to-file for appending. If to-file does
27 * not exist , fopen will create it.
28 */
29 if((to = fopen(argv[2], "a")) != NULL) {
30
31 /*
32 * Now read a buffer -full at a time from from -file
33 * and write it to the to-file.
34 */
35 while((n = fread(buf , sizeof(char), BUFSIZ , from)) > 0)
36 fwrite(buf , sizeof(char), n, to);
37
38 /* Now close the output file. */
39 fclose(to);
40
41 /* Signal no errors to the shell. */
42 ret = EXIT_SUCCESS;
43 } else
44 perror(argv[2]);
45
46 /* Now close the input file. */
47 fclose(from);
48 } else
49 perror(argv[1]);
50 } else
51 fprintf(stderr , "usage:␣%s␣from -file␣to -file\n", *argv);

34 CHAPTER 3. THE STANDARD I/O LIBRARY.

52 exit(ret);
53 }
54
55 /* End of append -buf.c file. */

3.5.4 The fscanf and fprintf Routines.

Other than dividing data into units of characters or lines, the routines described in the previous
sections do not interpret the data they manipulate. Sometimes however, more interpretation of the
data is necessary. As the reader probably knows, the internal representation of data in the computer
is not generally human-readable. For example, the number 10 is represented internally as binary
value:

n10 = 1010 = 000010102 = 0b00001010

However, when this number is to be printed on a line printer or terminal screen, it must be converted
to the two ASCII characters ’1’ and ’0’, which have the following bit patterns:

′1′ : 0b00110001

′0′ : 0b00110000

Likewise, in order to read in a number from the console, the characters that represent that number
to a human must be converted into the internal representation of that number in order for the
computer to deal with it. The fscanf14 routine accepts a variable number of arguments. The
first argument is a file pointer referring to a stream open for reading, in the case of the console
the programmer have to use the standard input stream, called stdin. The second argument is a
character string that specifies the format of the input data. The rest of arguments are pointers
to the data objects that are to be filled. fscanf reads character from the stream, converts them
into various internal representation as specified by the format string and stores them in the data
objects. The format string may contain:

• blanks, tabs and new-line characters, which match optional white space in the input;

• an ordinary character, other than ’%’, which must match the next input character;

• a conversion specification, consisting of a ’%’ character followed by a conversion character.

A conversion specification indicates how the next input field is to be interpreted; the result is placed
in the corresponding argument. Some of the more common conversion characters are:

d decimal integer is expected; the corresponding argument should be a pointer to an
integer;

f floating-point number is expected; the corresponding argument should be a pointer to
an object of type float;

l indicates either that the conversion will be one of dioux or n and the next pointer is a
pointer to a long int, rather than int, or that the conversion will be one of efg and
the next pointer is a pointer to double, rather than float, or that the conversion will
be one of sc[. If the conversion is one of sc[, the expected conversion input is a multibyte
character sequence. Each multibyte character in the sequence is converted with a call
to the mbrtowc function. The field width specifies the maximum amount of bytes read
from the multibyte character sequence and passed to mbrtowc for conversion. The
next pointer is a pointer to a wchar_t wide-character buffer large enough to accept
the converted input sequence including the terminating NUL wide character which will
be added automatically;

14See fscanf (3).

3.5. READING AND WRITING FILES. 35

ll Indicates that the conversion will be one of dioux or n and the next pointer is a pointer
to a long long int, rather than int;

p matches a pointer value (as printed by ‘%p’ in printf(3)); the next pointer must be a
pointer to void;

s character string is expected; the corresponding argument should point to a character
array or a character buffer large enough to hold the string plus a terminating null
character. The input field is terminated by a space or a new-line character.

For example to read in the string:

123 Hello 45.678

the call:

fscanf(stdin , "%d␣%s␣%f", &intvar , stringvar , &floatvar);

could be used. fscanf returns the number of input items matched or the constant EOF when
end-of-file has been reached. The fprintf15 routine also accepts a variable number of arguments.
The first argument is a file pointer to a stream open for writing, the second is again a format string
and the following arguments are the objects to be printed. Ordinary , non-’%’, characters in the
format string are copied to the output stream. A ’%’ character specifies that the corresponding
argument is to be converted; the conversion characters are the same as those described for fscanf.
Listing 3.4 shows a small program that asks the reader to enter an integer number and then
computes the factorial16 of that positive integer number and prints it out. This example uses
the printf and scanf routines, which assume the use of streams stdout and stdin, rather than
requiring the streams to be passed as arguments.

Listing 3.4: factorial - compute the factorial of an integer number.
1 /* -*- mode: c-mode; -*- */
2
3 /* factorial.c file. */
4 #include <stdio.h>
5 #include <stdlib.h>
6
7 /* factorial program. */
8 /* Function prototypes. */
9 int main(int , char *[]);

10 unsigned long int factorial(unsigned long int);

15See fprintf (3).
16The factorial of a positive integer number n is:

n! = 1 · 2 · . . . · n

where:
0! = 1

by definition. The problem with such computation is that an unsigned long int can hold a value:

0 ≤ n ≤ 264 − 1 = 18446744073709551615UL

let’s compare this number with the nearest factorials:

20! < 18446744073709551615 < 21!

2432902008176640000 < 18446744073709551615 < 51090942171709440000

we can see that the number on the right is far beyond the unsigned long int capacity but the number on the left is
not. The program practically can compute a factorial of a positive integer number that span from 0 to 20.

36 CHAPTER 3. THE STANDARD I/O LIBRARY.

11
12 /* Main function. */
13 int main(int argc , char *argv [])
14 {
15 long int ret = EXIT_FAILURE;
16 unsigned long int n, m;
17
18 /*
19 * Messaging the user to enter the integer
20 * number.
21 */
22 printf("Enter␣an␣integer␣number:␣");
23 scanf("%lu", &n);
24 if(n <= 20ul) {
25 m = factorial(n);
26 printf("The␣factorial␣of␣%lu␣is␣%lu.\n", n, m);
27 ret = EXIT_SUCCESS;
28 } else
29 perror("n␣must␣be␣a␣positive␣integer␣between␣0␣and␣20");
30 exit(ret);
31 }
32
33 /*
34 * The factorial function which computes
35 * n! = 1 * 2 * 3 * ... * n
36 */
37 unsigned long int factorial(unsigned long int n)
38 {
39 /* computes n! */
40 if((n == 0ul) || (n == 1ul))
41 return 1ul;
42 else
43 return (n * factorial(n - 1));
44 }
45
46 /* End of factorial.c file. */

Note the use of the two constants EXIT_SUCCESS which is set to 0 and EXIT_FAILURE which is set
to non zero value. They are specifically defined in <stdlib.h> to be used in the exit function.

3.5.5 The sscanf and sprintf Routines.

stdio also provides the ability to print formatted data into a character string and to read formatted
data from a character string. The sscanf17 and sprintf18 routines are identical to fscanf and
fprintf, except that instead of taking a file pointer to a stream as their first argument, they take
a character string or a character buffer. sscanf will copy characters from the character string or
buffer, converting them according to its second argument. sprintf will place a formatted copy
of its argument into the character string or buffer. However sprintf function should be used
carefully: let’s consider the following example:

char buf[2];

17See sscanf (3).
18See sprintf (3).

3.5. READING AND WRITING FILES. 37

unsigned int longvar = 65535;

......

sprintf(buf , "%d", longvar);

......

the string array is not big enough to hold the characters needed to print “65535”. In this case
executing the routine could lead to a catastrophic data corruption as memory is overlapped by
sprintf. This behaviour is understandable since those routines have no idea of the length of the
buffer to write in. To avoid this problem, stdio, provides a safe variant to sprintf: snprintf.
It takes a variable number of arguments just as sprintf, but the first argument is the character
string or the buffer, the second is the character string or buffer size, the rest are the same as the
sprintf routine. snprintf composes a string with the same text that would be printed if the
format string was used on printf, but instead of being printed, the content is stored as a character
string in the buffer pointed by the first argument, taking the second argument as the maximum
buffer capacity to fill. If the resulting string would be longer than the second argument value,
the remaining characters are discarded and not stored, but counted for the value returned by the
function. A terminating null character is automatically appended after the content written. After
the format string argument, the function expects at least as many additional arguments as needed
for format string.

Listing 3.5: snprintf - snprintf test program.

1 /* -*- mode: c-mode; -*- */
2
3 /* snprintf.c file. */
4 #include <stdio.h>
5 #include <stdlib.h>
6
7 /* snprintf test program. */
8 #define MAXLENGTH 16
9

10 /* Functions prototypes. */
11 int main(int , char *[]);
12
13 /* Main function. */
14 int main(int argc , char *argv [])
15 {
16 char divina[MAXLENGTH + 1];
17 char commedia [] = "Nel␣mezzo␣del␣cammin␣di␣nostra␣vita␣mi␣

ritrovai␣per␣una␣selva␣oscura ...";
18 long int ret = EXIT_FAILURE;
19
20 snprintf(divina , MAXLENGTH , "%s", commedia);
21 printf("Source␣string:␣%s\n", commedia);
22 printf("Destination␣string:␣%s\n", divina);
23 exit(EXIT_SUCCESS);
24 }
25
26 /* End of snprintf.c file. */

38 CHAPTER 3. THE STANDARD I/O LIBRARY.

3.6 Moving Around in Files.

It is often necessary to move to a specific location in a file before reading or writing data. For
example, if a file contains several fixed-size items indexed by number, it may be easier to skip over
unwanted records to read or write the desired record, rather than reading and processing all the
records preceding the desired one. The Standard I/O Library routine for moving around in a file
is called fseek19. It accepts three arguments: a file pointer to an open stream, a long integer
specifying the number of bytes to move, called an offset, and an integer indicating from where in
the file the offset is to be taken. If the third argument is SEEK_SET, the offset is taken to the
beginning of the file. If it is SEEK_CUR, the offset is taken from the current location in the file. If
the third argument is SEEK_END, the offset is taken from the end of the file. To move at the end
of a file, the call:

FILE *fp;

......

fseek(fp , 0L, SEEK_END);

should be used. To move at the beginning of the file, the call:

......

fseek(fp , 0L, SEEK_SET);

may be used or equivalently, the rewind routine may be used. rewind takes a single argument, a
file pointer to an open stream. To find out the current location in a file, the ftell routine should
be used. ftell accepts a single argument, a file pointer to an open stream and returns a long
integer indicating the offset from the beginning of the file.
Listing 3.6 shows a small program that creates a data file with one record for each of five users.
In order to demonstrate the use of fseek, the program writes the file backwards; that is, the last
record is written first and the first record is written last. This is somewhat pointless in practice, but
serves to demonstrate the appropriate concepts. The reader should enter this program and execute
it. Then try to write a program that will read the records from the file in the order 3, 0, 2, 1, 4
and print them out:

Listing 3.6: fseekdemo - demontrate the use of the fseek routine.
1 /* -*- mode: c-mode; -*- */
2
3 /* fseekdemo.c file. */
4 #include <stdio.h>
5 #include <stdlib.h>
6
7 /* fseekdemo program. */
8 /* structure and type definition. */
9 struct tagRecord {

10 int uid;
11 char login[9];
12 };
13
14 typedef struct tagRecord record_t;
15
16 /* Global variables. */

19See fseek(3).

3.6. MOVING AROUND IN FILES. 39

17 record_t records[5] = {
18 { 1, "user1" },
19 { 2, "user2" },
20 { 3, "user3" },
21 { 4, "user4" },
22 { 5, "user5" }
23 };
24
25 /* Function prototypes. */
26 int putRecord(FILE *, int , record_t *);
27 int main(int , char *[]);
28
29 /* Main function. */
30 int main(int argc , char *argv [])
31 {
32 int i;
33 long int ret = EXIT_FAILURE;
34 FILE *fp;
35
36 /* Open the data file for writing. */
37 if((fp = fopen("datafile.dat", "w")) != NULL) {
38
39 /* For each user , going backwards ... */
40 for(i = 4; i >= 0; i--) {
41 printf("writing␣record␣#%d\n", i);
42
43 /*
44 * Output the record. Notice we pass the address
45 * of the structure.
46 */
47 if(putRecord(fp , i, &records[i]) == EXIT_FAILURE) {
48 perror("Could␣not␣write␣record .\n");
49 break;
50 }
51 }
52 if(i == 0)
53 ret = EXIT_SUCCESS;
54 fclose(fp);
55 } else
56 perror("Could␣not␣open␣datafile.dat␣for␣writing .\n");
57 exit(ret);
58 }
59
60 int putRecord(FILE *fp , int i, record_t *r)
61 {
62 int ret = EXIT_FAILURE;
63
64 /*
65 * Seek to the i-th position from the beginning
66 * of the file.
67 */
68 if(fp) {

40 CHAPTER 3. THE STANDARD I/O LIBRARY.

69 if(r) {
70 if(fseek(fp, (long) (i * sizeof(record_t)), SEEK_SET) == 0)
71
72 /*
73 * Write the record. We want to write one
74 * object the size of a record structure.
75 */
76 if(fwrite ((char *) r, sizeof(record_t), 1, fp) == 1)
77 ret = EXIT_SUCCESS;
78 }
79 }
80 return ret;
81 }
82
83 /* End of fseekdemo.c file. */

To read back records from file just add to the previous program some code. In particular we have
the following. Listing 3.7 reads back records in specified order.

Listing 3.7: fseekreadback - demontrate the use of the fseek routine to read back records.
1 /* -*- mode: c-mode; -*- */
2
3 /* fseekreadback.c file. */
4 #include <stdio.h>
5 #include <stdlib.h>
6
7 /* fseekreadback program. */
8 /* structure and type definitions. */
9 struct tagRecord {

10 int uid;
11 char login[9];
12 };
13
14 typedef struct tagRecord record_t;
15
16 /* Global variables. */
17 int positions[5] = { 3, 0, 2, 1, 4 };
18 record_t records[5];
19
20 /* Function prototypes. */
21 int getRecord(FILE *, int , record_t *);
22 int main(int , char *[]);
23
24 /* Main function. */
25 int main(int argc , char *argv [])
26 {
27 int i;
28 long int ret = EXIT_FAILURE;
29 FILE *fp;
30 record_t rec;
31
32 /* Open the data file for reading. */
33 if((fp = fopen("datafile.dat", "r")) != NULL) {

3.6. MOVING AROUND IN FILES. 41

34 /* For each position read back the corresponding user. */
35
36 for(i = 0; i < 5; i++) {
37
38 /*
39 * Output the record. Notice we pass the address
40 * of the structure.
41 */
42 if(getRecord(fp , positions[i], &rec) != EXIT_FAILURE)
43 printf("position:␣%d,␣uid:␣%d,␣login:␣%s\n", positions[i

], rec.uid , rec.login);
44 else {
45 perror("Could␣not␣read␣record .\n");
46 break;
47 }
48 if(i == 5)
49 ret = EXIT_SUCCESS;
50 }
51
52 /* Now close the output file. */
53 fclose(fp);
54 } else
55 perror("Could␣not␣open␣datafile.dat␣for␣reading .\n");
56 exit(ret);
57 }
58
59 /*
60 * getRecord -- get a record from a file.
61 */
62 int getRecord(FILE *fp , int i, record_t *r)
63 {
64 int ret = EXIT_FAILURE;
65
66 /*
67 * Seek to the i-th position from the beginning
68 * of the file.
69 */
70 if(fp) {
71 if(r) {
72 if(fseek(fp, (long) (i * sizeof(record_t)), SEEK_SET) == 0)

{
73
74 /*
75 * Write the record. We want to write one
76 * object the size of a record structure.
77 */
78 if(fread ((void *) r, sizeof(record_t), 1, fp) == 1) {
79 ret = EXIT_SUCCESS;
80 }
81 }
82 }
83 }

42 CHAPTER 3. THE STANDARD I/O LIBRARY.

84 return ret;
85 }
86
87 /* End of fseekreadback.c file. */

As the reader may check, both putRecord and getRecord routines return a value. This is necessary
to tell the program the outcome of the operation that should be performed. In fact this is a good way
to tell to the calling program if something went wrong. The possible return values for both routines
are EXIT_SUCCESS on succesful operation and EXIT_FAILURE on error. The following listings 3.8
and 3.9 belongs to the same program. The .h file contains the definitions and prototypes for the .c
source code.

Listing 3.8: find-word - program to show the usage of fgets and /usr/share/dict/words file (include
file).

1 /* -*- mode: c-mode; -*- */
2
3 /* find -word.h file. */
4 #ifndef __FIND_WORD_H
5 #define __FIND_WORD_H
6
7 #include <stdio.h>
8 #include <stdarg.h>
9 #include <stdlib.h>

10 #include <stdbool.h>
11 #include <string.h>
12 #include <ctype.h>
13 #include <math.h>
14
15 #include "list.h"
16
17 #define FOREVER for (;;)
18 #define MAXINT 20
19 #define DEFAULT_DICTIONARY_PATH "/usr/share/dict/words"
20 #define min(a, b) ((a) < (b) ? (a) : (b))
21
22 /* Types. */
23
24 /* Functions prototype. */
25 void lowerize(char *, size_t);
26 void printArray(char *, void *, size_t);
27 size_t factorial(size_t);
28 size_t binomial(size_t , size_t);
29 void combinations(size_t *, size_t , size_t , size_t **);
30 long int getCombString(char *, char *, size_t *, size_t);
31 size_t ** allocateCombs(size_t , size_t);
32 long int deallocateCombs(size_t **);
33 char *intersect(char *, char *, size_t);
34 bool cmp(void *, ...);
35 int main(int , char *[]);
36
37 #endif /* __FIND_WORD_H */
38
39 /* End if find -word.h file. */

Listing 3.9: find-word - program to show the usage of fgets and /usr/share/dict/words (source
code file).

1 /* -*- mode: c-mode; -*- */
2
3 /* find -word.c file. */
4 #include "find -word.h"
5
6 /* find -word program. */
7
8 /* Main function. */
9 int main(int argc , char *argv [])

10 {
11 char ch, dictionary_path[BUFSIZ], combstr[BUFSIZ];
12 char line[BUFSIZ], *letters , *word;
13 bool found , *combstbl;
14 long int ret = EXIT_FAILURE;

3.6. MOVING AROUND IN FILES. 43

15 FILE *dict_file;
16 size_t i, j, k, l, m, n;
17 size_t combs_count , count , letters_count , chars_count;
18 size_t *indices , ** combs;
19 list_t *words_list = NULL;
20
21 /* Check our arguments. */
22 switch(argc) {
23 case 2:
24 strncpy(dictionary_path , DEFAULT_DICTIONARY_PATH , BUFSIZ);
25 letters = argv[1];
26 break;
27
28 case 3:
29 strncpy(dictionary_path , argv[1], BUFSIZ);
30 letters = argv[2];
31 break;
32
33 default:
34 letters = NULL;
35 fprintf(stderr , "usage:␣find -word␣<dictionary -file >␣<letters >,␣find -word␣<letters >\n");
36 break;
37 }
38 if(letters) {
39
40 /* force all characters in the string to be lower case. */
41 lowerize(letters , MAXINT);
42 letters_count = strnlen(letters , MAXINT);
43 if(letters_count < 21) {
44
45 /* Open system dictionary file. */
46 if((dict_file = fopen(dictionary_path , "r")) != NULL) {
47
48 /*
49 * loop starting from same length for words as
50 * the entered sets of characters.
51 */
52 for(count = letters_count; count >= 3; count --) {
53
54 /* computes the number of the character combinations. */
55 combs_count = binomial(letters_count , count);
56 printf("combinations␣count:␣%ld\n", combs_count);
57 combs = allocateCombs(combs_count , count);
58 if(combs) {
59 indices = (size_t *) calloc(count , sizeof(size_t));
60 if(indices) {
61
62 /* generate all character combinations without repetition. */
63 combinations(indices , letters_count , count , combs);
64 for(i = 0; combs[i] != NULL; i++) {
65 if(getCombString(combstr , letters , combs[i], count) == EXIT_SUCCESS) {
66
67 /* reset the file pointer to the start of the file. */
68 fseek(dict_file , 0, SEEK_SET);
69
70 /* loop the dictionary words database. */
71 while(fgets(line , BUFSIZ , dict_file) != NULL) {
72 line[strcspn(line , "\n")] = ’\0’;
73 lowerize(line , BUFSIZ);
74 m = strnlen(line , BUFSIZ);
75 if(m == count) {
76 word = intersect(line , combstr , count);
77 if(strnlen(word , count) == m) {
78 if(unique ((void *) word , words_list , cmp) == true)
79 words_list = push(word , &words_list);
80 }
81 }
82 }
83 }
84 }
85 free(indices);
86 }
87 deallocateCombs(combs);
88 }
89 }
90 fclose(dict_file);
91 FOREVER {

44 CHAPTER 3. THE STANDARD I/O LIBRARY.

92 word = pop(& words_list);
93 if(word) {
94 printf("word:␣%s\n", word);
95 free(word);
96 } else
97 break;
98 }
99 } else

100 fprintf(stderr , "could␣not␣open␣dictionary␣file:␣%s\n", dictionary_path);
101 } else
102 perror("too␣much␣letters␣given:␣>␣20!");
103 }
104 exit(ret);
105 }
106
107 /*
108 * allocateCombs -- allocate combinations arrays.
109 */
110 size_t ** allocateCombs(size_t n, size_t k)
111 {
112 size_t **ret;
113 size_t i;
114
115 /* check parameters. */
116 if(n > 0) {
117 if(k > 0) {
118 ret = calloc(n + 1, sizeof(size_t *));
119 if(ret) {
120 for(i = 0; i < n; i++) {
121 ret[i] = (size_t *) calloc(k, sizeof(size_t));
122 if(!ret[i])
123 break;
124 }
125 ret[i] = NULL;
126 }
127 }
128 }
129 return ret;
130 }
131
132 /*
133 * deallocateCombs -- deallocate combinations arrays.
134 */
135 long int deallocateCombs(size_t **c)
136 {
137 long int ret = EXIT_FAILURE;
138 size_t i;
139
140 /* check parameters. */
141 if(c) {
142 for(i = 0; c[i] != NULL; i++)
143 free(c[i]);
144 free(c);
145 ret = EXIT_SUCCESS;
146 }
147 return ret;
148 }
149
150 /*
151 * lowerize -- tolower every characters in a string.
152 */
153 void lowerize(char *s, size_t l)
154 {
155 char *p = NULL;
156
157 /* check parameters. */
158 if(s) {
159 p = s;
160 while ((*p != ’\0’) && ((p - s) <= l)) {
161 *p = tolower (*p);
162 ++p;
163 }
164 }
165 }
166
167 /*
168 * getCombString -- return the string from characters

3.6. MOVING AROUND IN FILES. 45

169 * and indices sets.
170 */
171 long int getCombString(char *comb , char *charset , size_t *indices , size_t count)
172 {
173 long int ret = EXIT_FAILURE;
174 size_t i;
175
176 /* chack parameters. */
177 if(comb) {
178 if(charset) {
179 if(indices) {
180 if(count > 0) {
181 for(i = 0; i < count; i++)
182 comb[i] = charset[indices[i] - 1];
183 comb[i] = ’\0’;
184 ret = EXIT_SUCCESS;
185 }
186 }
187 }
188 }
189 return ret;
190 }
191
192 /*
193 * printArray -- print array
194 */
195 void printArray(char *s, void *a, size_t c)
196 {
197 char arg[BUFSIZ];
198 size_t i;
199
200 /* check arguments. */
201 if(s) {
202 if(a) {
203 snprintf(arg , BUFSIZ , "%s", s);
204 for(i = 0; i < c; i++) {
205 if(i == 0)
206 printf("[␣");
207 if(strncmp(s, "%c", BUFSIZ) == 0)
208 printf(arg , ((char *) a)[i]);
209 if(strncmp(s, "%d", BUFSIZ) == 0)
210 printf(arg , ((unsigned char *) a)[i]);
211 else if(strncmp(s, "%ld", BUFSIZ) == 0)
212 printf(arg , ((long *) a)[i]);
213 if(i < (c - 1))
214 printf("␣");
215 else
216 printf("␣]");
217 }
218 }
219 }
220 }
221
222 /*
223 * factorial -- compute n!
224 */
225 size_t factorial(size_t n)
226 {
227 if((n == 0) || (n == 1))
228 return 1;
229 else
230 return (n * factorial(n - 1));
231 }
232
233 /*
234 * binomial -- return the number of combinations
235 * without repetitions:
236 * c = n! / (k! (n - k)!)
237 */
238 size_t binomial(size_t n, size_t k)
239 {
240 return (factorial(n) / (factorial(k) * factorial(n - k)));
241 }
242
243 /*
244 * combinations -- generates the combinations without
245 * repetitions and with no order.

46 CHAPTER 3. THE STANDARD I/O LIBRARY.

246 */
247 void combinations(size_t *s, size_t m, size_t n, size_t **c)
248 {
249 size_t i, j;
250
251 /* Set the base combination: 1, 2, 3, ..., n */
252 for (i = 0; i < n; i++)
253 s[i] = n - i;
254 j = 0;
255 FOREVER {
256 if(c[j])
257 memcpy(c[j++], s, sizeof(size_t) * n);
258
259 /*
260 * this check is not strictly necessary ,
261 * but if m is not close to n,
262 * it makes the whole thing quite a bit faster
263 */
264 i = 0;
265 if(s[i]++ < m)
266 continue;
267 for(; s[i] >= m - i;)
268 if(++i >= n)
269 return;
270 for(s[i]++; i; i--)
271 s[i - 1] = s[i] + 1;
272 }
273 }
274
275 /*
276 * intersect -- compute the intersection set from two strings.
277 */
278 char *intersect(char *a, char *b, size_t l)
279 {
280 char *tempa , *tempb , *ret;
281 size_t i, j, k, la, lb;
282
283 /* check parameters. */
284 if(a) {
285 if(b) {
286 if(l > 0) {
287 la = strnlen(a, l);
288 tempa = calloc(la, sizeof(char));
289 if(tempa) {
290 strncpy(tempa , a, la);
291 lb = strnlen(b, l);
292 tempb = calloc(lb, sizeof(char));
293 if(tempb) {
294 strncpy(tempb , b, lb);
295 ret = (char *) calloc(min(la, lb) + 1, sizeof(char));
296 if(ret) {
297 k = 0;
298 for(i = 0; i < la; i++) {
299 for(j = 0; j < lb; j++) {
300 if((tempa[i] == tempb[j]) &&
301 (tempa[i] != 0) &&
302 (tempb[j] != 0)) {
303 ret[k++] = tempa[i];
304 tempa[i] = 0;
305 tempb[j] = 0;
306 break;
307 }
308 }
309 }
310 ret[k] = 0;
311 }
312 free(tempb);
313 }
314 free(tempa);
315 }
316 }
317 }
318 }
319 return ret;
320 }
321
322 /*

3.6. MOVING AROUND IN FILES. 47

323 * cmp -- comparing callback handler.
324 */
325 bool cmp(void *a, ...)
326 {
327 bool ret = false;
328 char *b; va_list aplist;
329
330 /* chack parameters. */
331 if(a) {
332 if(b) {
333 va_start(aplist , a);
334 b = va_arg(aplist , char *);
335 ret = strncmp ((char *) a, (char *) b, BUFSIZ) == 0 ? true : false;
336 va_end(aplist);
337 }
338 }
339 return ret;
340 }
341
342 /* End of find -word.c file. */

Other source files are relative to the small list handling code:

1 /* -*- mode: c-mode; -*- */
2
3 /* list.h file. */
4 #ifndef __LIST_H
5 #define __LIST_H
6
7 #include <stdio.h>
8 #include <stdarg.h>
9 #include <stdlib.h>

10 #include <stdbool.h>
11 #include <string.h>
12 #include <ctype.h>
13
14 /* Types. */
15 struct tagList {
16 void *l_data;
17 struct tagList *l_next;
18 };
19
20 typedef struct tagList list_t;
21
22 /* Types. */
23
24 /* Functions prototype. */
25 list_t *push(void *, list_t **);
26 void *pop(list_t **);
27 bool unique(void *, list_t *, bool (*cmp)(void *, ...));
28
29 #endif /* __LIST_H */
30
31 /* End if list.h file. */

1 /* -*- mode: c-mode; -*- */
2
3 /* File list.c */
4 #include "list.h"
5
6 /*
7 * push -- push data on the head of the list.
8 */
9 list_t *push(void *d, list_t **l)

10 {
11 list_t *ret = *l, *temp;
12
13 if(d) {
14 temp = (list_t *) calloc(1, sizeof(list_t));

48 CHAPTER 3. THE STANDARD I/O LIBRARY.

15 if(temp) {
16 temp -> l_next = *l;
17 temp -> l_data = d;
18 ret = temp;
19 }
20 }
21 return ret;
22 }
23
24 /*
25 * pop -- remove data from the tail of the list.
26 */
27 void *pop(list_t **l)
28 {
29 void *ret = NULL;
30 list_t *temp = *l;
31
32 if(temp) {
33 if(temp -> l_next) {
34 while(temp -> l_next -> l_next)
35 temp = temp -> l_next;
36 ret = temp -> l_next -> l_data;
37 free(temp -> l_next);
38 temp -> l_next = NULL;
39 } else {
40 ret = temp -> l_data;
41 free(temp);
42 *l = NULL;
43 }
44 }
45 return ret;
46 }
47
48 /*
49 * unique -- check for other element in the list.
50 * The element to test is provided to
51 * the function itself.
52 */
53 bool unique(void *d, list_t *l, bool (*cmp)(void *, ...))
54 {
55 bool ret = true;
56 list_t *p;
57
58 if(d) {
59 if(cmp) {
60 p = l;
61 while(p) {
62 if(cmp(d, p -> l_data) == true) {
63 ret = false;
64 break;
65 } else
66 p = p -> l_next;
67 }
68 }
69 }
70 return ret;
71 }
72
73 /* End of list.c file. */

Chapter 4

Low-level I/O.

File Descriptors.
Opening and Creating Files.
Closing Files.
Reading and Writing Files.
Moving Around in Files.
Converting File Descriptors to File Pointers.

As discussed in the previous chapter, the Standard I/O Library provides different methods for reading
and writing data efficiently and easily. However, the task performed by these routines, namely
buffering and input/output conversion, are not always desirable. For example, when performing
input and output directly to and from a device such a tape drive, the programmer needs to be
able to determine the buffer sizes to be used, rather than letting the stdio routines do it. Of
course, routines do exist that provide that level of control. The Standard I/O Library is simply
a user-friendly interface to the system calls described in this chapter, which will call the low-level
interface.

4.1 File Descriptors.

The reader should recall that in the Standard I/O Library, a file is referred to by a file pointer, of
type FILE *. When using the low-level interface, a file is referred to using a file descriptor, which
is simply a small integer. As with stdio, there are three predefined file descriptors: STDIN_FILENO,
STDOUT_FILENO and STDERR_FILENO, which refer to the standard input, standard output and
standard error stream respectively. The files /dev/fd/0 through /dev/fd/# refer to file descriptors
which can be accessed through the file system. If the file descriptor is open and the mode the file
is being opened with is a subset of the mode of the existing descriptor, the call:

fd = open("/dev/fd/0", mode);

and the call:

fd = fcntl(0, F_DUPFD , 0);

are equivalent. Unlike the Standard I/O Library, which provides a shorthand set of routines to deal
with the standard input and output, all the low-level I/O routines require that a valid file descriptor
be passed to them.

49

50 CHAPTER 4. LOW-LEVEL I/O.

4.2 Opening and Creating Files.

The open1 routine is used to open a file for reading and/or writing, or to create it. open takes a
variable number of arguments: a character string containing the complete path name of the file to
open, an integer specifying how the file is to be opened and an optional integer mode for use when
creating a file. It returns an integer which is the file descriptor, on success or -1 if the file could not
be opened. The second argument to open is made up of various constants ORed together. These
constants are defined in the file <fcntl.h>:

O_RDONLY open for reading only;

O_WRONLY open for writing only;

O_RDWR open for reading and writing.

Any combination of the following flags may additionally be used:

O_NONBLOCK do not block on open or for data to become available;

O_APPEND append on each write;

O_CREAT create file if it does not exist. An additional argument of type mode_t must be
supplied to the call;

O_TRUNC truncate size to 0;

O_EXCL error if O_CREAT is set and file exists;

O_SYNC perform synchronous I/O operations;

O_SHLOCK atomically obtain a shared lock;

O_EXLOCK atomically obtain an exclusive lock;

O_NOFOLLOW if last path element is a symlink, don’t follow it;

O_CLOEXEC set FD_CLOEXEC, the close-on-exec flag, on the new file descriptor;

O_DIRECTORY error if path does not name a directory.

If the O_CREAT option is given, the optional third argument should contain the mode which the file
should to be created. This mode specifies the access permissions on the file and is described in
more detail in Chapter 4, Converting File Descriptors to File Pointers..

4.3 Closing Files.

The close2 system call is used to close an open file. close takes a single argument, the file
descriptor referring to the file to be closed. 0 is returned on success, -1 is returned if an error
occurs.

1See open(2).
2See close(2).

4.4. READING AND WRITING FILES. 51

4.4 Reading and Writing Files.

At this point the reader can easily open and close files, the next thing to do is read and write
data from and to that file. Using the low-level interface, files can be read and written a buffer-full
at a time. The size of the buffer is left up to the programmer which has to use an appropriate
dimension. For example, if the programmer reads or writes characters one at a time, instead of
in units of a few thousand, the operating system will access the disk, or the device, once for each
character resulting in a slower program speed3. The read system call takes three arguments: the
first is the file descriptor for the open file to read. The second is the pointer to the buffer which
will contains data and the third is the number of bytes to read from the file and store into the
buffer. If successful, the number of bytes actually read is returned. Upon reading end-of-file, 0 is
returned. Otherwise, a -1 is returned and the global variable errno is set to indicate the error. The
write system call takes three arguments: first is the file descriptor to an open file for write. The
second argument is a pointer to the buffer containing the data to be written to the file and the
third argument is the count, in bytes, of elements from the beginning of the buffer to be written in
the file. Similarly to read4 system call, upon successful completion the number of bytes which were
written is returned. Otherwise, a -1 is returned and the global variable errno is set to indicate the
error. Listing 4.1 shows a low-level version of our file appending program. Note that because read
and write cause the system to access the disk each times they are called, it is important for the
programmer to specify reasonably large buffer sizes or else his/her program, and the system, will
run very slowly. Try experimenting with large and small buffer sizes to get a feel for the difference,
the reader may need to use a file of one or five bilion characters to really appreciate the difference.

Listing 4.1: append2 - append one file to another using the low-level interface.
1 /* -*- mode: c-mode; -*- */
2
3 /* append2.c file. */
4 #include <stdio.h>
5 #include <stdlib.h>
6 #include <unistd.h>
7 #include <fcntl.h>
8 #include <errno.h>
9 #include <string.h>

10
11 /* append2.c program. */
12
13 /* Functions prototypes. */
14 int main(int , char *[]);
15
16 /* Main function. */
17 int main(int argc , char *argv [])
18 {
19 int n;
20 int fromfd , tofd;
21 char buf[BUFSIZ];
22 long ret = EXIT_FAILURE;
23
24 /* Check our arguments. */
25 if(argc == 3) {
26

3This is actually not entirely true since peripherals are always buffered for I/O operations.
4See read(2).

52 CHAPTER 4. LOW-LEVEL I/O.

27 /* Open the from -file for reading. */
28 if((fromfd = open(argv[1], O_RDONLY)) >= 0) {
29
30 /*
31 * Open the to-file for appending. If to-file does
32 * not exist , open will create it with mode 0644
33 * -rw -r--r--. Note that we specify the mode in octal
34 * not decimal.
35 */
36 if((tofd = open(argv[2], O_WRONLY | O_CREAT | O_APPEND ,

0644)) >= 0) {
37
38 /*
39 * Now read a buffer -full line at a time from from -file
40 * and write it to the to-file. Note that we only
41 * write the number of characters read read in,
42 * rather than always writing BUFSIZ characters.
43 */
44 while((n = read(fromfd , buf , sizeof(buf))) > 0)
45 if(write(tofd , buf , n) != n) {
46 write(STDERR_FILENO , "Could␣not␣write␣to␣to-file.\n",

28);
47 break;
48 }
49
50 /* Now close the files. */
51 close(tofd);
52 if(errno == 0)
53 ret = EXIT_SUCCESS;
54 } else {
55 write(STDERR_FILENO , argv[2], strlen(argv[2]));
56 }
57 close(fromfd);
58 } else {
59 write(STDERR_FILENO , argv[1], strlen(argv[1]));
60 }
61 } else {
62 write(STDERR_FILENO , "Usage:␣", 7);
63 write(STDERR_FILENO , *argv , strlen(argv[0]));
64 write(STDERR_FILENO , "␣from -file␣to-file\n", 19);
65 }
66 exit(ret);
67 }
68
69 /* End of append2.c file. */

In the example above one could disagree with the fact that error messages are printed using the
low-level write5 routine. The purpose of this is to explain the usage of the routine itself. It is
clear that, perror would be quite a good choice, in fact that way one has not to give the size
of the character string to print. Using read and write always involve to deal with buffers and
their dimensions. Another problem is the usage of strlen. This routine, defined in <string.h>,

5See write(2).

4.5. MOVING AROUND IN FILES. 53

is capable of computing the length of a nul-terminated string. The reader should try to pass a
non nul-terminated string to this routine and see the effect. A safer way to get the length for a
string is strnlen which thatkes to arguments: a string and a maximum length to return. In fact
if, for whatever reason, the length overflow the value specified in the second argument, the routine
returns it.

4.5 Moving Around in Files.

As mentioned before, it is often necessary to move to a specific location in a file before reading
or writing data. The low-level routine for moving around in a file is called lseek. The function
repositions the offset of the file descriptor in the first argument to the second argument of type
off_t which is an offset according to the third argument the whence directive. The first argument
must be an open file descriptor. lseek repositions the file pointer as follows:

• if whence is SEEK_SET, the offset is set to offset bytes;

• if whence is SEEK_CUR, the offset is set to its current location plus offset bytes;

• if whence is SEEK_END, the offset is set to the size of the file plus offset bytes.

The lseek function allows the file offset to be set beyond the end of the existing end-of-file of the
file. If data is later written at this point, subsequent reads of the data in the gap return bytes of
zeros, until data is actually written into the gap. Some devices are incapable of seeking and thus
the value of the pointer associated with such a device is undefined. Upon successful completion,
lseek returns the resulting offset location as measured in bytes from the beginning of the file.
Otherwise, a value of -1 is returned and errno is set to indicate the error.

4.5.1 Duplicating File Descriptors.

Occasionally it is necessary to have more than one file descriptor referring to the same file. This is
common when forking and executing new processes. To obtain a new file descriptor which refers
to the same file:

int fd, fd2;

......

fd2 = dup(fd);

fd2 will now refer to the same file as fd did. dup6 returns -1 if an error occurs. Two alternate
forms of the call allows the programmer to select which file descriptor the user wishes to refer to
the file and additional flags. For example suppose that standard input should be connected to a
given disk file referred by a file descriptor stored in the variable fd7:

int fd;

......

dup2(fd, 0);

In dup2, the value of the second argument, the new descriptor, is specified. If this descriptor is
already in use, it is first deallocated as if a close call had been done first. When the second
argument equals the first argument, dup2 just returns without affecting the close-on-exec flag. In

6See dup(2).
7This is how the shell handles the ’<’ redirect.

54 CHAPTER 4. LOW-LEVEL I/O.

dup3, both the value of the second argument, the new descriptor and the close-on-exec flag on the
second argument, the new file descriptor, are specified: the second argument specifies the value
and the O_CLOEXEC bit in the third argument specifies the close-on-exec flag. Unlike dup2, if the
first argument and the second argument are equal then dup3 fails. Otherwise, if the third argument
is 0 then dup3 is identical to a call to dup2.

4.6 Converting File Descriptors to File Pointers.

Sometimes is desirable to convert an existing low-level file descriptor referring to an open file into
something that can be used with the Standard I/O Library. For example the pipe system call,
described in Chapter 9, The Signal Stack., returns a file descriptor connected to the output stream
of another program. If this program prints nothing but a list of numbers, it would be useful to
be able to use fscanf to read them in. The stdio routine fdopen8 takes two arguments: a file
descriptor referring to an open file and a character string indicating how the file descriptor is to be
used. This second argument is identical to the second argument used with fopen. Upon successful
completion, fdopen return a FILE pointer. Otherwise, NULL is returned and the global variable
errno is set to indicate the error. As reference the second argument, indicating the mode, points
to a string beginning with one of the following sequences, additional characters may follow these
sequences:

“r”|“rb” open file for reading;

“r+”|“rb+”|”r+b” open for reading and writing;

“w”|“wb” open for writing. The file is created if it does not exist, otherwise it is
truncated;

“w+”|“wb+”|“w+b” open for reading and writing. The file is created if it does not exist, other-
wise it is truncated;

“a”|“ab” open for writing. The file is created if it does not exist;

“a+”|“ab+”|“a+b” open for reading and writing. The file is created if it does not exist.

The letter “b” in the mode strings above is strictly for compatibility with ANSI X3.159-1989
(“ANSI C89”) and has no effect; the “b” is ignored. After any of the above prefixes, the mode
string can also include zero or more of the following:

“e” the close-on-exec flag is set on the underlying file descriptor of the new FILE;

“x” if the mode string starts with “w” or “a” then the function shall fail if the file specified
by path already exists, as if the O_EXCL flag was passed to the open function. It has
no effect if used with fdopen or the mode string begins with “r”.

Like described for fopen in 3.2.

8See fdopen(3).

Chapter 5

Files and Directories.

File System Concepts.
Determining the Accessibility of a File.
Getting Information from an i-node.
Reading Directories.
Modifying File Attributes.
Miscellaneous File System Routines.

Files and directories forms the interface the system presents to help the user to organize, retrieve
and store informations. These are part of an entity called file system. Other parts of this interface
are the system calls to perform particular operations to properly handle these informations. For
example: delete, rename, move, truncate a file, reaname a directory, etc..

5.1 File System Concepts.

Before describing the many system calls and library routines available for manipulating files and
directories, it is necessary to provide a brief overview of the OpenBSD file system: FFS the Fast File
System. This is an improved version of the 4.4BSD File System sometimes referred as UFS, UNIX
File System. FFS is designed to be fast, reliable and able to handle the most common situations
effectively. By default, during installation, OpenBSD tunes FFS for general use, but the system
administator can optimize it to fit the needs - whether one needs to store a very huge amount of
tiny files or a some 30 GB files. The administrator doesn’t need to know much about FFS internals,
but as a programmer, the reader should understand blocks, fragments and i-nodes. OpenBSD can
also use these file systems too:

cd9660 for iso 9660 formated cdrom;

ext2fs ext2 linux file systems;

mfs memory file system;

msdos Microsoft msdos filesystem;

nfs UNIX network filesystem;

ntfs Microsoft Windows NT file system;

tmpfs Temporary file system.

55

56 CHAPTER 5. FILES AND DIRECTORIES.

A file system is described by its super-block, which in turn describes the cylinder groups. The
super-block is critical data and is replicated in each cylinder group to protect against catastrophic
loss. This is done at file system creation time and the critical super-block data does not change,
so the copies need not be referenced further unless disaster strikes. Addresses stored in i-nodes
are capable of addressing fragments of blocks. File system blocks of at most size MAXBSIZE can
be optionally broken into 2, 4, or 8 pieces, each of which is addressable; these pieces may be
DEV_BSIZE, or some multiple of a DEV_BSIZE unit. Large files consist of exclusively large data
blocks. To avoid undue wasted disk space, the last data block of a small file is allocated only as
many fragments of a large block as are necessary. The file system format retains only a single
pointer to such a fragment, which is a piece of a single large block that has been divided. The
size of such a fragment is determinable from information in the i-node, using the blksize(fs,
ip, lbn) macro. The file system records space availability at the fragment level; to determine
block availability, aligned fragments are examined. The root i-node is the root of the file system.
i-node 0 can’t be used for normal purposes and historically bad blocks were linked to i-node 11.
Thus the root i-node is 2. The fs_minfree element gives the minimum acceptable percentage
of file system blocks that may be free. If the freelist drops below this level, only the super-user
may continue to allocate blocks. The fs_minfree element may be set to 0 if no reserve of free
blocks is deemed necessary, although severe performance degradations will be observed if the file
system is run at greater than 95% full; thus the default value of fs_minfree is 5%. Empirically
the best trade-off between block fragmentation and overall disk utilization at a loading of 95%
comes with a fragmentation of 8; thus the default fragment size is an eighth of the block size.
The element fs_optim specifies whether the file system should try to minimize the time spent
allocating blocks (FS_OPTTIME), or if it should attempt to minimize the space fragmentation on
the disk (FS_OPTSPACE). If the value of fs_minfree is less than 5%, then the file system defaults
to optimizing for space to avoid running out of full sized blocks. If the value of fs_minfree is
greater than or equal to 5%, fragmentation is unlikely to be problematical, and the file system
defaults to optimizing for time.

5.1.1 FFS Versions.

The original FFS was written in 1980 and included hard-coded limits that were ample for the day.
File systems could have up to 230 blocks or just under a terabyte (TB). In 1983 a 1 TB file system
was unthinkable. In 2024, 1 TB drives are the smaller and cheaper disk on the market. For larger
file systems, we have FFS version 2. FFS2 can support file systems up to 8 zettabytes (ZB) and
OpenBSD supports FFS and FFS2. The i386 and amd64 boot floppies support only FFS, not FFS2.
The installation CD, however, supports both. Most machines that need to boot from floppy don’t
need FFS2 and probably don’t have a BIOS that can support 2 TB dives anyway. The file system
creation program newfs is smart enough to use FFS2 on file systems quite large to need it, so for
most installations, the administrator doesn’t nee to worry about difference between FFS and FFS2.

5.1.2 Blocks, Fragments and i-nodes.

Both FFS and FFS2 are managed through blocks, fragments and i-nodes. This arrangement isn’t
unique to FFS and FFS2; file systems such as NTFS use data blocks and index nodes too. The
indexing system used by each file system is largely unique.

blocks are sections of disk that contain data, Files are placed in one or more blocks.
OpenBSD’s FFS uses a default block size of 16 KB or eight times the fragment
size, whichever is smaller. Not all files are even multiples of 16 KB, so leftover
bits go in fragments;

1i-node 1 is no longer used for this purpose; however, numerous dump tapes make this assumption, so we are
stuck with it.

5.1. FILE SYSTEM CONCEPTS. 57

fragments is one-eighth of the block size or 2 KB by default. A 20 KB file fills one block and
two fragments;

i-nodes index nodes, contain basic data about files, such as file’s size, permissions and the
list of blocks that contain the file. Collectively, the data in an i-node is known as
metadata or data about data.

Additionally there are other data structures:

super-blocks which are blocks that contain vital information about the file system’s size and
specifications. Super-blocks are so important that FFS makes many backup copies
of them. If one needs to meddle with superblocks there’s an high chance to lost
the entire file system.

5.1.3 Ordinary Files.

A file contains whatever information a user, or the system itself, places in it. Unlike other operating
systems, no format is imposed on a regular file, e.g. sequential, random access, etc. Instead a
regular file is considered simply as a sequence of bytes and these bytes could be read and write in
any way the programmer wants. Certain programs expect a file to be in a special format, so the C
compiler gcc wants a source file to be in a specific format, in this case a C source file, to produce an
object file or an executable. So the file format is not determined by the operating system but from
the application programs that access the specific file. Directories provide the mapping between the
names of files and the files themselves, thus inducing a structure on the file system as a whole. A
directory contains a number of files; it may also contain subdirectories which in turn contain more
files and more subdirectories. A directory behaves exactly like an ordinary file when read, though
it may not be written by unprivileged, non super-user, programs. The operating system maintains
several directories for its own use; one of these is the root directory named with /. All files in the
file system can be found by tracing a path through a chain of directories starting at the root / until
the desired file is reached. When the name of a file is specified to the system, it may be in the form
of a path name, which is a sequence of file names separated by slashes. Any file name but the one
following the last slash must be the name of a directory. If the sequence begins with a slash, the
search begins in the root directory; otherwise the search begins in the program’s current directory.
As limiting cases we have:

• the name “/” refers to the root directory;

• a null file name, e.g. /a/b/, refers to the directory whose name precedes it;

• two slashes together, “//”, are interpreted as a single slash.

Each directory always has at least two entries. The name “.” in each directory refers to the directory
itself. Thus a program may read its current directory, without knowing its name, by opening the
file “.”. By convention, the name “..” refers to the parent of the directory in which appears, that is,
to the directory in which the current directory was created. A program may move from its current
directory to the root directory by constantly changing its directory to “..”. As a limiting case, when
in the root directory the name “..” is a circular link to the root. As per man hier the OpenBSD file
system contains more or less:

/ root directory;

/altroot/ alternate (backup) location for the root, “/”, file system;

/bin/ user utilities fundamental to both single and multi-user environments. These pro-
grams are statically compiled and therefore do not depend on any system libraries
to run;

58 CHAPTER 5. FILES AND DIRECTORIES.

/bsd pure kernel executable, the operating system loaded into memory at boot-time;

/bsd.mp pure kernel executable for multiprocessor machines;

/bsd.rd installation kernel. The built-in RAM disk contains utilities which can be run with-
out an external file system, so this kernel is useful for limited system maintenance
too;

/bsd.sp pure kernel executable for single processor machines;

/dev/ block and character device files;

/etc/ system configuration files and scripts;

/home/ default location for user home directories;

_sysupgrade/ download location for sysupgrade;

/mnt/ empty directory commonly used by system administrators as a temporary mount
point;

/root/ default home directory for the super-user;

/sbin/ system programs and administration utilities fundamental to both single and multi-
user environments. Most of these programs are statically compiled and therefore
do not depend on any system libraries to run;

/tmp/ temporary files that are not preserved between system reboots. Periodically cleaned
by daily ;

/usr/ contains the majority of user utilities and applications;

/var/ multi-purpose log, temporary, transient, and spool files.

5.1.4 Special files.

Special files are one of the most unusual aspects of the UNIX file system, and thus of OpenBSD.
Each I/O device, disk drive, tape drive, serial port, terminal, etc., is associated with at least one
such file. To user programs, special files look like any other file, but requests to read or write the
file result in activation of the associated device. For example, a program whishing to write on a
magnetic tape might open the file /dev/rst*. Requests to read and write this file will cause the
tape to move and data to be read or written at the appropriate density. etc. By a long-standing
UNIX convention, entries for special files reside in the directory /dev, but there is nothing in the
operating system that requires or enforces this. The amd64 OpenBSD installation supports the
following devices:

Special device names

all creates special files for all devices on amd64;

ramdisk ramdisk kernel devices;

std creates the standard devices: console, klog, kmem, ksyms, mem, null, stderr,
stdin, stdout, tty, zero. Which are absolutely necessary for the system to function
properly;

local creates configuration-specific devices, by invoking the shell file MAKEDEV.local.

5.1. FILE SYSTEM CONCEPTS. 59

Disks

cd* ATAPI and SCSI CD-ROM drives;

fd* floppy disk drives (3 1/2", 5 1/4");

rd* rd pseudo-disks;

sd* SCSI disks, including flopticals;

vnd* file pseudo-disk devices;

wd* winchester disk drives (ST506, IDE, ESDI, RLL, ...).

Tapes

ch* SCSI media changers;

st* SCSI tape drives.

Terminal ports

tty[0-7][0-9a-f] NS16x50 serial ports;

ttyc* Cyclades serial ports;

ttyVI* Virtio serial ports.

Pseudo terminals

ptm pty master device;

pty* set of 62 master pseudo terminals;

tty* set of 62 slave pseudo terminals.

Console ports

ttyC-J* wscons display devices;

wscons minimal wscons devices;

wskbd* wscons keyboards;

wsmux wscons keyboard/mouse mux devices.

Pointing devices

wsmouse* wscons mice;

Printers lpa* Polled printer port;

lpt* IEEE 1284 centronics printer.

60 CHAPTER 5. FILES AND DIRECTORIES.

USB devices

ttyU* USB serial ports;

uall all USB devices;

ugen* generic USB devices;

uhid* generic HID devices, see uhid(4);

fido fido/* nodes;

ujoy ujoy/* nodes;

ulpt* printer devices;

usb* bus control devices used by usbd for attach/detach.

Special purpose devices

apm power Management Interface;

audio* audio devices;

bio ioctl tunnel pseudo-device;

bktr* video frame grabbers;

bpf Berkeley Packet Filter;

dt Dynamic Tracer;

diskmap disk mapper;

dri Direct Rendering Infrastructure;

efi EFI runtime services;

fd fd/* nodes;

fuse Userland File-system;

gpio* General Purpose Input/Output;

hotplug devices hot plugging;

ipmi* IPMI BMC access;

nvram NVRAM access;

kcov Kernel code coverage tracing;

pci* PCI bus devices;

pctr* PC Performance Tuning Register access device;

pf Packet Filter;

pppx* PPP Multiplexer;

pppac* PPP Access Concentrator;

radio* FM tuner devices;

5.1. FILE SYSTEM CONCEPTS. 61

*random in-kernel random data source;

rmidi* Raw MIDI devices;

speaker PC speaker;

tun* network tunnel driver;

tap* ethernet tunnel driver;

tuner* tuner devices;

uk* unknown SCSI devices;

video* video V4L2 devices;

vmm Virtual Machine Monitor;

vscsi* Virtual SCSI controller;

pvbus* paravirtual device tree root;

kstat Kernel Statistics.

5.1.5 Removable File Systems.

In modern computing, especially in the workstation and personal computer world, it is important
to use external extensions to the file system. This is useful to exchange data with other users or
remote systems that could not access the internet. Everyone knows the usage of the USB sticks,
which are static mass storage devices. OpenBSD provides a mean to add external file systems to
the root: the system command mount. The mount command invokes a file system specific program
to prepare and graft the special device or remote node (rhost:path) on to the file system tree at the
point node. If either special or node are not provided, the appropriate information is taken from the
/etc/fstab file. For disk partitions, the special device is either a disklabel UID (DUID) or an entry
in /dev. If it is a DUID, it will be automatically mapped to the appropriate entry in /dev. In either
case the partition must be present in the disklabel loaded from the device. The partition name is
the last letter in the entry name. For example, /dev/sd0a and 3eb7f9da875cb9ee.a both refer to
the ‘a’ partition. A mount point node must be an existing directory for a mount to succeed, except
in the special case of /, of course. Only the super-user may mount file systems.

5.1.6 Device Numbers.

To create special file associated to a particular device, the super-user could use the script /etc/-
MAKEDEV which automates this operation. This script relies on the system utility mknod. A
special file is characterized by two numbers:

major the major device number is an integer number which tells the kernel which device driver
entry point to use. To learn what major device number to use for a particular device,
check the file /dev/MAKEDEV to see if the device is known;

minor the minor device number tells the kernel which subunit the node corresponds to on the
device; for example, a subunit may be a file system partition or a tty line.

These numbers are mapped inside /dev/MAKEDEV script.

62 CHAPTER 5. FILES AND DIRECTORIES.

5.1.7 Hard Links and Symbolic Links.

A hard link to a file is indistinguishable from the original directory entry; any changes to a file are
effectively independent of the name used to reference the file. Hard links may not normally refer to
directories and may not span file systems. A symbolic link contains the name of the file to which
it is linked. The referenced file is used when an open operation is performed on the link. There are
three system utilities which deal with links:

• stat - obtains information about the file;

• lstat - like stat except when the named file is a symbolic link;

• readlink - when used on a symbolic link, places the target name in a string buffer.

A stat2 on a symbolic link will return the linked-to file; an lstat must be done to obtain infor-
mation about the link. The readlink3 call may be used to read the contents of a symbolic link.
Symbolic links may span file systems, refer to directories, and refer to non-existent files.

5.2 Determining the Accessibility of a File.

To determine if a file is accessible to a program, the access4 system call may be used. This call
takes two arguments. The first argument is the null terminated string relative to the path for which
we want to know the permissions and the second argument is the mode argument which is either
the bitwise OR of one or more of the access permissions to be checked:

R_OK for read permission;

W_OK for write permission;

X_OK for execute/search permission;

F_OK for the existence test.

These constants are defined in <sys/unistd.h>. All components of the pathname path are checked
for access permissions, including F_OK. If the path cannot be found or if any of the desired access
modes would not be granted, then a -1 value is returned and errno is set to the reason of failure;
otherwise a 0 value is returned. This call is important because is answers to the question: what
are the access permissions for that file?

5.3 Getting Information from an i-node.

The system call used for obtaining the information stored in an i-node is called stat. It takes two
arguments. The first argument is the null terminated string holding the path of the object we want
to get informations. The second argument is the pointer to an allocated struct of type stat which
will hold the requested informations. This argument is defined in <sys/stat.h>:

Listing 5.1: The stat structure.
struct stat {

dev_t st_dev;
ino_t st_ino;
mode_t st_mode;
nlink_t st_nlink;

2See stat(2).
3See readlink(2).
4See access(2).

5.3. GETTING INFORMATION FROM AN I-NODE. 63

uid_t st_uid;
gid_t st_gid;
dev_t st_rdev;
struct timespec st_atim;
struct timespec st_mtim;
struct timespec st_ctim;
off_t st_size;
blkcnt_t st_blocks;
blksize_t st_blksize;
u_int32_t st_flags;
u_int32_t st_gen;

};

single structure members are the following:

st_dev a signed 32 bit integer which represent the i-node’s device;

st_ino an unsigned 64 bit integer which represent the i-node’s number;

st_mode an unsigned 32 bit integer which represent a mask of bits:

• S_ISUID — set user id on execution;

• S_ISGID — set group id on execution;

• S_ISTXT — sticky bit;

• S_IRWXU RWX — mask for owner:

• S_IREAD, S_IRUSR — R for owner;

• S_IWRITE, S_IWUSRW — W for owner;

• S_IEXEC, S_IXUSR — X for owner;

• S_IRWXG — RWX mask for group:

• S_IRGRP — R for group;

• S_IWGRP — W for group;

• S_IXGRP — X for group;

• S_IRWXO — RWX mask for other:

• S_IROTH — R for other;

• S_IWOTH — W for other;

• S_IXOTH — X for other;

• S_IFMT — mask for the file type:

– S_IFIFO — name pipe (fifo);
– S_IFCHR — character special;
– S_IFDIR — directory;
– S_IFBLK — block special;
– S_IFREG — regular;
– S_IFLNK — symbolic link;
– S_IFSOCK — socket;
– S_ISVTX — save swapped text even after use.

st_nlink an unsigned 32 bit integer which represent the number of hard links;

st_uid an unsigned 32 bit integer which represent the user id of the file’s owner;

64 CHAPTER 5. FILES AND DIRECTORIES.

st_gid an unsigned 32 bit integer which represent the group id;

st_rdev a signed 32 bit integer which represent the device type;

st_atim a structured data type object, struct timespec, which holds the time of the last
access;

st_mtim a structured data type object, struct timespec, which holds the time of the last data
modification;

st_ctim a structured data type object, strcut timespec, which holds the time of the last status
change;

st_size a 64 bit signed integer which represent the file size in bytes;

st_blocks a 64 bit signed integer which is the number of blocks containing the file;

st_blksize a 32 bit signed integer which represent the optimal block size for file;

st_flags a 32 bit unsigned integer which holds user defined flags for the file;

st_gen a 32 bit unsigned integer which represent the file generation number.

5.4 Reading Directories.

A directory contains structures of type dirent5, defined in <sys/dirent.h>:

Listing 5.2: The dirent structure.
#define MAXNAMLEN 255

struct dirent {
ino_t d_fileno;
off_t d_off;
u_int16_t d_reclen;
u_int8_t d_type;
u_int8_t d_namlen;
char d_name[MAXNAMLEN + 1];

};

d_fileno Files which have been deleted will have i-numbers, d_fileno, equal to 0; these
should in general be skipped over when reading the directory. A directory is read
by simply opening it and reading structures either one at a time or all at once.;

d_off is the offset of next entry.

d_reclen is the length of this record;

d_type The d_type member could be:

• DT_UNKNOWN;

• DT_FIFO;

• DT_CHR;

• DT_DIR;

5direct is a macro defined to substitute dirent.

5.4. READING DIRECTORIES. 65

• DT_BLK;

• DT_REG;

• DT_LNK;

• DT_SOCK.

d_namlen is the current length of the name stored in d_name for which the maximum
possible length is MAXNAMELEN + 1;

d_name it should be noted that the name of file, d_name, is not guaranteed to be null-
terminated; programs should always be careful of this.

Listing 5.3 shows a small program that simply open the current directory and prints the names of
all of the files it contains.

Listing 5.3: listfiles - list the names of the files in the current directory.
1 /* -*- mode: c-mode; -*- */
2
3 /* listfiles.c file. */
4 #include <stdio.h>
5 #include <stdlib.h>
6 #include <sys/types.h>
7 #include <sys/dir.h>
8
9 /* listfiles program. */

10 /* Function prototypes. */
11 int main(int , char *[]);
12
13 /* Main function. */
14 int main(int argc , char *argv [])
15 {
16 DIR *dp;
17 struct dirent *dir;
18 long int ret = EXIT_FAILURE;
19
20 /* Open the current directory. */
21 if((dp = opendir(".")) != NULL) {
22
23 /*
24 * Read directory entries. Since we’re reading
25 * entries one at a time , we use the readdir routine ,
26 * which buffers them internally. Don’t use the
27 * low -level read to do things this way , since
28 * at a time is very inefficient.
29 */
30 while((dir = readdir(dp)) != NULL) {
31
32 /* mark deleted file. */
33 if(dir -> d_fileno == 0)
34 printf("␣DELETED␣");
35
36 /*
37 * Make sure we print no more that DIRSIZ

66 CHAPTER 5. FILES AND DIRECTORIES.

38 * characters.
39 */
40 printf("%.*s\n", DIRSIZ(dir), dir -> d_name);
41 }
42 closedir(dp);
43 ret = EXIT_SUCCESS;
44 } else {
45 fprintf(stderr , "Could␣not␣read␣current␣directory\n");
46 }
47 exit(ret);
48 }
49
50 /* End of listfiles.c file. */

The program uses the system routines: opendir6, readdir7 and closedir8. opendir accepts one
argument: the character string which holds the path of the directory to read. It returns a pointer
to an object of type directory pointer DIR or NULL on error. readdir accepts one argument:
the directory pointer and returns a pointer to an object of type struct dirent which holds one
directory entry data or NULL on error. closedir accepts an object of type directory pointer. In
order to consolidate the information provided in the preceding sections, Listing 5.4 shows a program
similar in function to the standard UNIX program ls. This program will perform an ls -asl on each
of its named arguments. If the argument is a directory, the contents of that directory will be listed.
For simplicity’s sake the program prints the user id and group id of the owner of each file rather
than digging up the login and group names. Also, the filenames are not sorted and the directory is
simply printed in order it is read. The directory reading routines of Berkeley UNIX are used in the
example; the reader should be able to change this himself if necessary.

Listing 5.4: ls - an "ls"-like program.

1 /* -*- mode: c-mode; -*- */
2
3 /* ls.c file. */
4 #include <stdio.h>
5 #include <stdlib.h>
6 #include <string.h>
7 #include <stdint.h>
8 #include <unistd.h>
9 #include <time.h>

10 #include <sys/types.h>
11 #include <sys/dir.h>
12 #include <sys/stat.h>
13
14 /* ls program. */
15 /* Global variables definitions. */
16 char *modes[] = {
17 "---",
18 "--x",
19 "-w-",
20 "-wx",
21 "r--",

6See opendir(3).
7See readdir(3).
8See closedir(3).

5.4. READING DIRECTORIES. 67

22 "r-x",
23 "rw -",
24 "rwx"
25 };
26
27 /* Function prototypes. */
28 void usage(void);
29 long int list(char *, uint8_t);
30 void printout(char *, char *, uint8_t);
31 int main(int , char *[]);
32
33 /* Main function. */
34 int main(int argc , char *argv [])
35 {
36 int ch;
37 long int ret = EXIT_FAILURE;
38 struct stat st_buf;
39 struct dirent *dir;
40 DIR *dp;
41 uint8_t flags;
42
43 /* Check arguments count. */
44 flags = 0;
45 if(argc < 2) {
46 ret = list(".", flags);
47 } else {
48
49 /* Process arguments. */
50 while((ch = getopt(argc , argv , "als")) != -1) {
51 switch(ch) {
52 case ’a’:
53 flags |= 0x01;
54 break;
55
56 case ’s’:
57 flags |= 0x02;
58 break;
59
60 case ’l’:
61 flags |= 0x04;
62 break;
63
64 default:
65 usage();
66 flags |= 0x08;
67 break;
68 }
69 }
70 if((flags & 0x08) == 0) {
71 argc -= optind;
72 argv += optind;
73 if(stat(*argv , &st_buf) >= 0) {

68 CHAPTER 5. FILES AND DIRECTORIES.

74
75 /*
76 * If it is a directory we list it ,
77 * otherwise just print the info about
78 * the file.
79 */
80 if((st_buf.st_mode & S_IFMT) == S_IFDIR)
81 ret = list(*argv , flags);
82 else {
83 printout(".", *argv , flags);
84 ret = EXIT_SUCCESS;
85 }
86 } else {
87 fprintf(stderr , "ls␣error .\n");
88 }
89 }
90 }
91 exit(ret);
92 }
93
94 /*
95 * list -- read a directory and list the files it
96 * contains.
97 */
98 long int list(char *name , uint8_t flags)
99 {

100 long int ret = EXIT_FAILURE;
101 DIR *dp;
102 struct dirent *dir;
103
104 /* Open the directory. */
105 if((dp = opendir(name)) != NULL) {
106
107 /* For each entry ... */
108 while((dir = readdir(dp)) != NULL) {
109
110 /* Skip removed file. */
111 if(dir -> d_fileno == 0)
112 continue;
113
114 /* Print it out. */
115 printout(name , dir -> d_name , flags);
116 }
117 ret = EXIT_SUCCESS;
118 } else
119 fprintf(stderr , "%s:␣cannot␣open.\n", name);
120 return ret;
121 }
122
123 /*
124 * printout -- print out the information about
125 * a file.

5.4. READING DIRECTORIES. 69

126 */
127 void printout(char *dir , char *name , uint8_t flags)
128 {
129 int i, j;
130 char perms[10];
131 struct stat st_buf;
132 char newname[S_BLKSIZE];
133
134 /*
135 * Make full path name , so
136 * we have a legal path.
137 */
138 snprintf(newname , S_BLKSIZE , "%s/%s", dir , name);
139 if((name[0] != ’.’) || ((flags & 0x01) != 0)) {
140
141 /*
142 * At this point we know the file exists ,
143 * so this won’t fail.
144 */
145 stat(newname , &st_buf);
146 if((flags & 0x04) != 0) {
147
148 /* Print size in kbytes. */
149 if((flags & 02) != 0)
150 printf("%5d␣", (st_buf.st_size + S_BLKSIZE - 1) /

S_BLKSIZE);
151
152 /*
153 * Get the file type. For convenience (and to
154 * make this example universal), we ignore the
155 * other types which are version -dependent.
156 */
157 switch(st_buf.st_mode & S_IFMT) {
158 case S_IFREG:
159 putchar(’-’);
160 break;
161
162 case S_IFDIR:
163 putchar(’d’);
164 break;
165
166 case S_IFCHR:
167 putchar(’c’);
168 break;
169
170 case S_IFBLK:
171 putchar(’b’);
172 break;
173
174 default:
175 putchar(’?’);
176 break;

70 CHAPTER 5. FILES AND DIRECTORIES.

177 }
178
179 /*
180 * Get each of the three groups of permissions
181 * (owner , group , other). Since they’re just
182 * bits , we can count in binary and use this
183 * as subscript (see the modes array , above).
184 */
185 *perms = ’\0’;
186 for(i = 2; i >= 0; i--) {
187
188 /*
189 * Since we’re subscripting , we don’t
190 * read the constants. Just get a
191 * value between 0 and 7.
192 */
193 j = (st_buf.st_mode >> (i * 3)) & 0x07;
194
195 /*
196 * Get the perm bits.
197 */
198 strncat(perms , modes[j], 4);
199 }
200
201 /*
202 * Handle special bits which replace the ’x’
203 * in places.
204 */
205 if((st_buf.st_mode & S_ISUID) != 0)
206 perms[2] = ’s’;
207 if((st_buf.st_mode & S_ISGID) != 0)
208 perms[5] = ’s’;
209 if((st_buf.st_mode & S_ISVTX) != 0)
210 perms[8] = ’t’;
211
212 /*
213 * Print permissions , number of links ,
214 * user and group ids.
215 */
216 printf("%s%3d␣%5d/%-5d␣", perms , \
217 st_buf.st_nlink , \
218 st_buf.st_uid , \
219 st_buf.st_gid);
220
221 /*
222 * Print the size of the file in bytes.
223 * and the last modification time. The
224 * ctime routine converts a time to ASCII;
225 * it is described in Chapter 7, Telling
226 * Time and Timing Things.
227 */
228 if((flags & 0x02) != 0)

5.5. MODIFYING FILE ATTRIBUTES. 71

229 printf("%7d␣", st_buf.st_size);
230 printf("%.12s␣", ctime (& st_buf.st_mtime) + 4);
231
232 /*
233 * Finally , print the file name.
234 */
235 }
236 printf("%s", name);
237 putchar(’\n’);
238 }
239 }
240
241 /*
242 * usage -- show program usage on the shell.
243 */
244 void usage(void)
245 {
246 printf("Usage:␣ls␣[-asl]␣dir\n");
247 }
248
249 /* End of ls.c file. */

5.5 Modifying File Attributes.

The chmod9 system call is used to change the modes of a file. It takes two arguments: the first
argument is a character string containing the path of a file. The second argument is a value of type
mode_t, the same in the stat structure (see 5.1). A similar call fchmod takes as first argument
the file descriptor of an open file and as second argument the same of chmod. Both routines, upon
successful completion, the value 0 is returned; otherwise the value -1 is returned and the global
variable errno is set to indicate the error. The chown10 system call changes the owner and group
of a file. It takes three arguments: the first argument is the character string holding the path for
the file, the second argument is an integer of type uid_t which represent the new owner user id
and finally the third argument of type gid_t that represent the new group id. A similar routine is
fchown: its first argument is the file descriptor of an open file and the rest two arguments are the
same of chown. Both routines, upon successful completion, the value 0 is returned; otherwise the
value -1 is returned and the global variable errno is set to indicate the error.

5.6 Miscellaneous File System Routines.

The rest of this chapter is devoted to the routines that don’t fit into their own section but are
nevertheless important.

5.6.1 Changing Directories.

A program can change its current working directory with the chdir11 system call. It takes a single
parameter as the character string containing the new directory path. A slightly different system call
is fchdir which takes the file descriptor of the directory to change to. Upon successful completion,

9See chmod(2).
10See chown(2).
11See chdir(2).

72 CHAPTER 5. FILES AND DIRECTORIES.

the value 0 is returned; otherwise the value -1 is returned and the global variable errno is set to
indicate the error. All of these routines are described in Chapter 13, Networking System Calls..

5.6.2 Deleting and Truncating Files.

Files can be deleted using the unlink12 system call. It takes one argument: the character string
which represents the file path. Upon successful completion, the value 0 is returned; otherwise
the value -1 is returned and the global variable errno is set to indicate the error. To remove
directory we have to use the rmdir system call. It takes one argument: the character string which
represents the path to the directory that should be deleted. Upon successful completion, the value 0
is returned; otherwise the value -1 is returned and the global variable errno is set to indicate the
error. truncate13 causes the file named by path, or referenced by file descriptor in ftruncate,
to be truncated or extended to length bytes in size. If the file was larger than this size, the extra
data is lost. If the file was smaller than this size, it will be extended as if by writing bytes with
the value zero. With ftruncate, the file must be open for writing. Both routines, upon successful
completion, the value 0 is returned; otherwise the value -1 is returned and the global variable errno
is set to indicate the error.

5.6.3 Making Directories.

To create a directory we use the mkdir14 system call. It takes two arguments: the first is a character
string containing the path of the directory to create, the second argument an integer of type mode_t
to specify the directory modes. The directory path is created with the access permissions specified
by the second argument and restricted by the umask of the calling process. The directory’s owner
id is set to the process’s effective user id. The directory’s group id is set to that of the parent
directory in which it is created. Upon successful completion, the value 0 is returned; otherwise the
value -1 is returned and the global variable errno is set to indicate the error.

5.6.4 Linking and Renaming Files.

The link15 system call atomically creates the specified directory entry16. It takes two arguments:
the first is a character string which represent the path of the source object to link to. The second
argument is a character string which is the path of the hard link to be created with the attributes
of the underlying object pointed at by the first argument. If the link is successful: the link count
of the underlying object is incremented; the first argument and the second argument share equal
access and rights to the underlying object. If the file specified in the first argument is removed,
the file specified in the second argument is not deleted and the link count of the underlying object
is decremented. The file specified in the first argument must exist for the hard link to succeed
and both the files must be in the same file system. As mandated by POSIX.1 the file specified in
the first argument may not be a directory. Upon successful completion, the value 0 is returned;
otherwise the value -1 is returned and the global variable errno is set to indicate the error. To
rename a file the rename17 system call is used. It takes two character string arguments. The first
argument is the path of the source file, the second argument is the destination file path. The
rename function causes the link named as source object to be renamed as destination object. If the
destination object exists, it is first removed. Both source and destination objects must be of the
same type: that is, both directories or both non-directories, must reside on the same file system.
rename guarantees that if the destination already exists, an instance of it will always exist, even

12See unlink(2).
13See truncate(2).
14See mkdir(2).
15See link(2).
16Hard link.
17See rename(2).

5.6. MISCELLANEOUS FILE SYSTEM ROUTINES. 73

if the system should crash in the middle of the operation. If the final component of source object
is a symbolic link, the symbolic link is renamed, not the file or directory to which it points. Upon
successful completion, the value 0 is returned; otherwise the value -1 is returned and the global
variable errno is set to indicate the error.

5.6.5 Symbolic Links.

In OpenBSD, symbolic links are simply “pointers” to files; they are not hard links. Unlike them,
they may cross file system boundaries. To create a symbolic link the symlink18 system call is used.
A symbolic link provided as second argument in a character string is created to the first argument
in a character string: the second argument is the name of the file created, the first argument is
the string used in creating the symbolic link. Either name may be an arbitrary path name; the files
need not be on the same file system, and the file specified by the first argument need not exist at
all. Upon successful completion, the value 0 is returned; otherwise the value -1 is returned and the
global variable errno is set to indicate the error.

5.6.6 The umask Value.

When a file is created with the system call open19, a mode is supplied for the file to created with.
Invisibly to the user, this mode is modified by the program’s umask. The umask is a number just
like the mode, except it indicates permissions to be turned off rather than on. For example, if the
program’s umask is 0022 and a file is created mode 0666, the actual mode of the file be computed
as:

file_mode = create_mode & ~umask;

so the actual mode of this file will be:

0666 & ~0022 = 0666 & 0755 = 0644

the umask value only affects creation modes of files and directories; the modes supplied to the
chmod call are not affected. Most systems have a default umask value of 0 or 022. It may be
changed with the umask system call. This system routine sets the process’s file mode creation
mask to the value of the argument and returns the previous value of the mask. Only the read,
write, and execute file permission bits of the argument are honored, all others are ignored. The file
mode creation mask is used by the bind, mkdir, mkdirat, mkfifo, mkfifoat, mknod, mknodat,
open and openat system calls to turn off corresponding bits requested in the file mode, see chmod.
This clearing allows users to restrict the default access to their files. The default mask value is
S_IWGRP|S_IWOTH, which is 022, write access for the owner only. Child processes inherit the mask
of the calling process.

18See symlink(2).
19The creat system call is now obsolete.

Chapter 6

Device I/O Control.

The ioctl System Call.
Line Disciplines.
The fcntl System Call.
Non-blocking I/O.
The select System Call.

Controlling input and output devices is an important task for several reasom. Some examples
include:

• when prompting fo a password, it is normally desirable to prevent the computer from echoing
by printing the characters typed and thus giving the password away;

• many people like to adjust various input control characters on their terminal, such as the
erase, kill and interrupt characters;

• programs accesing the magnetic tape device often need to rewind the tape, skip over files on
the tape device off-line, etc.;

• the volume level for the audio board output;

• the motor state, on or off, for a disk or optical drive;

• the tray motor for an blueray optical drive;

• a serial port configuration: speed, number of bits, parity, stop bit, etc..

6.1 The ioctl System Call.

OpenBSD operating system provide one catch-all system call for controlling input and output at
the device level. This call is ioctl1. It takes a variable number of arguments. The first argument
is a file descriptor to an open file, the second argument is an unsigned long integer representing
the request. This has encoded in it whether the argument is an in parameter or out parameter and
the size of the third optional argument in bytes. Macros and defines used in specifying an ioctl
request are located in the file <sys/ioctl.h>. The third optional argument is either an integer of
type int or a pointer to a device-specific data structure, depending upon the given request. The
following Listing 6.1 shows the usage of ioctl to plays some notes on the internal PC speaker.

1See ioctl(2).

75

76 CHAPTER 6. DEVICE I/O CONTROL.

Listing 6.1: speaker - plays some notes on the internal PC speaker.

1 /* -*- mode: c-mode; -*- */
2
3 /* speaker.c file. */
4 #include <stdio.h>
5 #include <stdlib.h>
6 #include <unistd.h>
7 #include <fcntl.h>
8 #include <errno.h>
9 #include <sys/ioctl.h>

10 #include <dev/isa/spkrio.h>
11
12 /* speaker program. */
13 /* Functions prototypes. */
14 int main(int , char *[]);
15
16 /* Main function. */
17 int main(int argc , char *argv [])
18 {
19 int fd, i;
20 long int ret = EXIT_FAILURE;
21 tone_t tones[5] = {
22 { 440, 200 },
23 { 880, 200 },
24 { 1660, 200 },
25 { 3320, 200 },
26 { 6640, 200 }
27 };
28
29 /* Call ioctl. */
30 if((fd = open("/dev/speaker", O_WRONLY , 0)) >= 0) {
31 for(i = 0; i < 5; i++) {
32 if(ioctl(fd, SPKRTONE , &tones[i]) < 0) {
33 perror("speaker");
34 break;
35 }
36 }
37 close(fd);
38 if(i >= 5)
39 ret = EXIT_SUCCESS;
40 } else {
41 perror("speaker");
42 }
43 exit(ret);
44 }
45
46 /* End of speaker.c file. */

A typical peripheral that the user often encounters is a serial type device: it could be a serial
port or a terminal. The serial device is mapped to the file /dev/tty* and /dev/cua*, they as
regarded as hardware terminal. When a user logs into the OpenBSD system on one of these
hardware terminal ports, the system has already opened the associated device and prepared the

6.2. LINE DISCIPLINES. 77

line for normal interactive use2. There is also a special case of a terminal file that connects not
to a hardware terminal port, but to another program on the other side. These special terminal
devices are called ptys and provide the mechanism necessary to give users the same interface to
the system when logging in over a network3 for example. Even in these cases the details of how
the terminal file was opened and set up is already handled by special software in the system. Thus,
users do not normally need to worry about the details of how these lines are opened or used. For
hardware terminal ports, dial-out is supported through matching device nodes called calling units.
For instance, the terminal called /dev/tty03 would have a matching calling unit called /dev/cua03.
These two devices are normally differentiated by creating the calling unit device node with a minor
number 128 greater than the dial-in device node. Whereas the dial-in device, the tty, normally
requires a hardware signal to indicate to the system that it is active, the dial-out device, the cua,
does not, and hence can communicate unimpeded with a device such as a modem, or with another
system over a serial link. This means that a process like getty will wait on a dial-in device until
a connection is established. Meanwhile, a dial-out connection can be established on the dial-out
device4 without disturbing anything else on the system. The getty process does not even notice
that anything is happening on the terminal port. If a connecting call comes in after the dial-out
connection has finished, the getty process will deal with it properly, without having noticed the
intervening dial-out action. When an interactive user logs in, the system prepares the line to behave
in a certain way5, described in stty at the command level, and in termios at the programming
level. To change settings associated with a login terminal, refer to the preceding stty and termios
system documentation6 for the common cases.

6.2 Line Disciplines.

A terminal file is used like any other file in the system in that it can be opened, read, and written to
using standard system calls. For each existing terminal file, there is a software processing module
called a line discipline associated with it. The line discipline essentially glues the low level device
driver code with the high level generic interface routines7 and is responsible for implementing the
semantics associated with the device. When a terminal file is first opened by a program, the default
line discipline called the termios line discipline is associated with the file. This is the primary line
discipline that is used in most cases and provides the semantics that users normally associate with
a terminal. When the termios line discipline is in effect, the terminal file behaves and is operated
according to the rules described in termios. The operations described here generally represent
features common across all line disciplines, although some of these calls may not make sense in
conjunction with a line discipline other than termios and some may not be supported by the
underlying hardware8.

6.2.1 Terminal File Operations.

All of the following operations are invoked using the ioctl system call. In addition to the ioctl
requests defined here, the specific line discipline in effect will define other requests specific to it9.
The following section lists the available ioctl requests. The name of the request, a description of
its purpose, and the typed argument parameter, if any, are listed. For example, the first entry says:

TIOCSETD int *ldisc

2See getty.
3Using ssh or telnet.
4For the very same hardware terminal port.
5called a line discipline.
6man pages.
7Such as read and write.
8Or lack thereof, as in the case of ptys.
9Actually termios(4) defines them as function calls, not ioctl requests.

78 CHAPTER 6. DEVICE I/O CONTROL.

and would be called on the terminal associated with file descriptor zero by the following code
fragment:

int ldisc;

......

ldisc = TTYDISC;
ioctl(0, TIOCSETD , &ldisc);

6.2.2 Terminal File Request Descriptions.

These are:

• TIOCSETD int *ldisc — change to the new line discipline pointed to by ldisc. The
available line disciplines currently available are:

– TTYDISC — termios interactive line discipline;

– PPPDISC — point-to-point protocol line discipline;

– NMEADISC — NMEA 0183 line discipline;

– MSTSDISC — Meinberg Standard Time String line discipline;

• TIOCGETD int *ldisc — return the current line discipline in the integer pointed to by
ldisc;

• TIOCSBRK void — set the terminal hardware into BREAK condition;

• TIOCCBRK void — clear the terminal hardware BREAK condition;

• TIOCSDTR void — sssert data terminal ready (DTR);

• TIOCCDTR void — clear data terminal ready (DTR);

• TIOCGPGRP int *tpgrp — return the current process group the terminal is associated with
in the integer pointed to by tpgrp. This is the underlying call that implements the tcgetp-
grp(3) call;

• TIOCSPGRP int *tpgrp — associate the terminal with the process group, as an integer,
pointed to by tpgrp. This is the underlying call that implements the tcsetpgrp(3) call;

• TIOCGETA struct termios *term — place the current value of the termios state associ-
ated with the device in the termios structure pointed to by term. This is the underlying call
that implements the tcgetattr(3) call;

• TIOCSETA struct termios *term — set the termios state associated with the device im-
mediately. This is the underlying call that implements the tcsetattr(3) call with the TCSANOW
option;

• TIOCSETAF struct termios *term — first wait for any output to complete, clear any
pending input, then set the termios state associated with the device. This is the underlying
call that implements the tcsetattr(3) call with the TCSAFLUSH option;

• TIOCOUTQ int *num — place the current number of characters in the output queue in the
integer pointed to by num;

6.2. LINE DISCIPLINES. 79

• TIOCNOTTY void — This call is obsolete but left for compatibility. In the past, when a
process that didn’t have a controlling terminal10 first opened a terminal device, it acquired
that terminal as its controlling terminal. For some programs this was a hazard as they didn’t
want a controlling terminal in the first place, and this provided a mechanism to disassociate the
controlling terminal from the calling process. It must be called by opening the file /dev/tty
and calling TIOCNOTTY on that file descriptor. The current system does not allocate a
controlling terminal to a process on an open(2) call: there is a specific ioctl called TIOCSCTTY
to make a terminal the controlling terminal. In addition, a program can fork(2) and call the
setsid(2) system call which will place the process into its own session - which has the effect
of disassociating it from the controlling terminal. This is the new and preferred method for
programs to lose their controlling terminal;

• TIOCSETVERAUTH int *secs — indicate that the current user has successfully authenti-
cated to this session. Future authentication checks may then be bypassed by performing a
TIOCCHKVERAUTH check. The verified authentication status will expire after secs seconds.
Only root may perform this operation;

• TIOCCLRVERAUTH void — clear any verified auth status associated with this session;

• TIOCCHKVERAUTH void — check the verified auth status of this session. The calling pro-
cess must have the same real user ID and parent process as the process which called
TIOCSETVERAUTH. A zero return indicates success;

• TIOCSTOP void — stop output on the terminal, like typing ^S at the keyboard;

• TIOCSTART void — start output on the terminal, like typing ^Q at the keyboard;

• TIOCSCTTY void — make the terminal the controlling terminal for the process, the process
must not currently have a controlling terminal;

• TIOCDRAIN void — wait until all output is drained;

• TIOCEXCL void — set exclusive use on the terminal. No further opens are permitted except
by root. Of course, this means that programs that are run by root, or setuid, will not obey
the exclusive setting - which limits the usefulness of this feature;

• TIOCNXCL void — clear exclusive use of the terminal. Further opens are permitted.

• TIOCFLUSH int *what — if the value of the int pointed to by what contains the FREAD
bit as defined in <sys/fcntl.h>, then all characters in the input queue are cleared. If it
contains the FWRITE bit, then all characters in the output queue are cleared. If the value of
the integer is zero, then it behaves as if both the FREAD and FWRITE bits were set, i.e., clears
both queues;

• TIOCGWINSZ struct winsize *ws — put the window size information associated with the
terminal in the winsize structure pointed to by ws. The window size structure contains
the number of rows and columns and pixels if appropriate, of the devices attached to the
terminal. It is set by user software and is the means by which most full-screen oriented
programs determine the screen size;

• TIOCSWINSZ struct winsize *ws — set the window size associated with the terminal to
be the value in the winsize structure pointed to by ws, see above;

10See The Controlling Terminal in termios(4).

80 CHAPTER 6. DEVICE I/O CONTROL.

• TIOCCONS int *on — if on points to a non-zero integer, redirect kernel console output11 to
this terminal. If on points to a zero integer, redirect kernel console output back to the normal
console. This is usually used on workstations to redirect kernel messages to a particular
window;

• TIOCMSET int *state — the integer pointed to by state contains bits that correspond to
modem state. Following is a list of defined variables and the modem state they represent:

– TIOCM_LE — Line Enable;

– TIOCM_DTR — Data Terminal Ready;

– TIOCM_RTS — Request To Send;

– TIOCM_ST — Secondary Transmit;

– TIOCM_SR — Secondary Receive;

– TIOCM_CTS — Clear To Send;

– TIOCM_CAR — Carrier Detect;

– TIOCM_CD — Carrier Detect (synonym);

– TIOCM_RNG — Ring Indication;

– TIOCM_RI — Ring Indication (synonym);

– TIOCM_DSR — Data Set Ready.

This call sets the terminal modem state to that represented by state. Not all terminals may
support this;

• TIOCMGET int *state — return the current state of the terminal modem lines as repre-
sented above in the integer pointed to by state;

• TIOCMBIS int *state — the bits in the integer pointed to by state represent modem
state as described above; however, the state is OR-ed in with the current state;

• TIOCMBIC int *state — the bits in the integer pointed to by state represent modem
state as described above; however, each bit which is on in state is cleared in the terminal;

• TIOCGTSTAMP struct timeval *timeval — return the, single, timestamp;

• TIOCSTSTAMP struct tstamps *tstamps — chooses the conditions which will cause the
current system time to be immediately copied to the terminal timestamp storage. This
is often used to determine exactly the moment at which one or more of these events oc-
curred, though only one can be monitored. Only TIOCM_CTS and TIOCM_CAR are honoured
in tstamps.ts_set and tstamps.ts_clr; these indicate which raising and lowering events
on the respective lines should cause a timestamp capture;

• TIOCSFLAGS int *state — the bits in the integer pointed to by state contain bits that
correspond to serial port state. Following is a list of defined variables and the serial port state
they represent:

– TIOCFLAG_SOFTCAR — ignore hardware carrier;

– TIOCFLAG_CLOCAL — set clocal on open;

– TIOCFLAG_CRTSCTS — set crtscts on open;

– TIOCFLAG_MDMBUF — set mdmbuf on open.

11See printf (9).

6.2. LINE DISCIPLINES. 81

This call sets the serial port state to that represented by state. Not all serial ports may
support this;

• TIOCGFLAGS int *state — return the current state of the serial port as represented above
in the integer pointed to by state;

• TIOCSTAT void — causes the kernel to write a status message to the terminal that displays
the current load average, the name of the command in the foreground, its process ID, the
symbolic wait channel, the number of user and system seconds used, the percentage of CPU
the process is getting, and the resident set size of the process.

6.2.3 The winsize Structure.

OpenBSD supports a windowing system such as the X Window System by Xorg. This includes
structure which defines the size of a window. Programs such vim and less use the information about
window size to determine the number of rows and columns on the screen. These informations are
stored in the kernel in order to provide a consistent interface, but is not used by the kernel itself:

Listing 6.2: The winsize structure.
struct winsize {

unsigned short ws_row;
unsigned short ws_col;
unsigned short ws_xpixel;
unsigned short ws_ypixel;

};

ws_row member is the number of window rows in characters;

ws_col member is the number of window columns in characters;

ws_xpixel member is the window horizontal size in pixels;

ws_ypixel member is the window vertical size in pixels.

The associated request is TIOCGWINSZ to read the current window size and TIOCSWINSZ to set the
window size. When ws_row and ws_col are zero, the entire structure has to be ignored, as no
window size has been set. When a window size is changed, either by the user, using a mouse or
other device, or by a program, all programs in the terminal’s process group are sent the SIGWINCH
signal indicating a size change. This enables editors and the like to re-format the screen according
to new size. Listing 6.3 shows the usage for the winsize structure.

Listing 6.3: winsize - returns the size of the terminal window.
1 /* -*- mode: c-mode; -*- */
2
3 /* winsize.c file. */
4 #include <stdio.h>
5 #include <stdlib.h>
6 #include <unistd.h>
7 #include <fcntl.h>
8 #include <errno.h>
9 #include <sys/ioctl.h>

10 #include <sys/tty.h>
11 #include <sys/ttycom.h>
12

82 CHAPTER 6. DEVICE I/O CONTROL.

13 /* winsize program. */
14 /* Functions prototypes. */
15 int main(int , char *[]);
16
17 /* Main function. */
18 int main(int argc , char *argv [])
19 {
20 int fd, i;
21 long int ret = EXIT_FAILURE;
22 struct winsize ws;
23
24 /* Call ioctl. */
25 if((fd = open("/dev/tty", O_RDWR | O_NOCTTY)) >= 0) {
26 if(ioctl(fd, TIOCGWINSZ , &ws) >= 0) {
27 if((ws.ws_row == 0) && (ws.ws_col == 0))
28 printf("Ignoring␣the␣winsize␣structure .\n");
29 else {
30 printf("terminal␣number␣of␣rows:␣%d\n", ws.ws_row);
31 printf("terminal␣number␣of␣columns:␣%d\n", ws.ws_col);
32 printf("terminal␣x␣pixels␣size:␣%d\n", ws.ws_xpixel);
33 printf("terminal␣y␣pixels␣size:␣%d\n", ws.ws_ypixel);
34 }
35 ret = EXIT_SUCCESS;
36 } else
37 perror("winsize");
38 close(fd);
39 }
40 exit(ret);
41 }
42
43 /* End of winsize.c file. */

6.2.4 The termios Structure.

It is the general terminal line discipline. Informations about that are stored in the termios structure
defined in <termios.h>:

Listing 6.4: The termios structure.
#define NCCS 20

struct termios {
tcflag_t c_iflag;
tcflag_t c_oflag;
tcflag_t c_cflag;
tcflag_t c_lflag;
cc_t c_cc[NCCS];
int c_ispeed;
int c_ospeed;

};

c_iflag is a bit mask for the input control flags which can be composed ORing
the following constants:

6.2. LINE DISCIPLINES. 83

• IGNBRK — ignore BREAK condition;

• BRKINT — map BREAK to SIGINT;

• IGNPAR — ignore (discard) parity errors;

• PARMRK — mark parity and framing errors;

• INPCK — enable checking of parity errors;

• ISTRIP — strip 8th bit off chars;

• INLCR — map NL into CR;

• IGNCR — ignore CR;

• ICRNL — map CR to NL (ala CRMOD);

• IXON — enable output flow control;

• IXOFF — enable input flow control;

• IXANY — any char will restart after stop;

• IUCLC — translate upper to lower case;

• IMAXBEL — ring bell on input queue full.

c_oflag is a bit mask for the output control flags which can be composed ORing
the following constants:

• OPOST — enable following output processing;

• ONLCR — map NL to CR-NL (ala CRMOD);

• TABDLY — horizontal tab delay mask;

• TAB0 — no tab delay or expansion;

• TAB3 — expand tabs to spaces;

• OXTABS — BSD name for TAB3;

• ONOEOT — discard EOT’s (^D) on output;

• OCRNL — map CR to NL;

• OLCUC — translate lower case to upper case;

• ONOCR — no CR output at column 0;

• ONLRET — NL performs the CR function.

c_cflags are the hardware control flags. This bit mask could be composed ORing
the following constants:

• CIGNORE — ignore control flags;

• CSIZE — character size mask;

• CS5 — 5 bits (pseudo);

• CS6 — 6 bits;

• CS7 — 7 bits;

• CS8 — 8 bits;

• CSTOPB — send 2 stop bits;

• CREAD — enable receiver;

• PARENB — parity enable;

• PARODD — odd parity, else even;

84 CHAPTER 6. DEVICE I/O CONTROL.

• HUPCL — hang up on last close;

• CLOCAL — ignore modem status lines;

• CRTSCTS — RTS/CTS full-duplex flow control;

• CRTS_IFLOW — XXX compat;

• CCTS_OFLOW — XXX compat;

• MDMBUF — DTR/DCD hardware flow control;

• CHWFLOW — all types of hw flow control.

c_lflag is a bit mask for the local flags. It is composed by ORing the following
constants:

• ECHOKE — visual erase for line kill;

• ECHOE — visually erase chars;

• ECHOK — echo NL after line kill;

• ECHO — enable echoing;

• ECHONL — echo NL even if ECHO is off;

• ECHOPRT — visual erase mode for hardcopy;

• ECHOCTL — echo control chars as ^(Char);

• ISIG — enable signals INTR, QUIT, [D]SUSP;

• ICANON — canonicalize input lines;

• ALTWERASE — use alternate WERASE algorithm;

• IEXTEN — enable DISCARD and LNEXT;

• EXTPROC — external processing;

• TOSTOP — stop background jobs from output;

• FLUSHO — output being flushed (state);

• XCASE — canonical upper/lower case;

• NOKERNINFO — no kernel output from VSTATUS;

• PENDIN — XXX retype pending input (state);

• NOFLSH — don’t flush after interrupt.

c_cc array contains the control character defined for the terminal. Every
member in this array has got a label:

• VEOF = 0;

• VEOL = 1;

• VEOL2 = 2;

• VERASE = 3;

• VWERASE = 4;

• VKILL = 5;

• VREPRINT = 6;

• first spare = 7;

• VINTR = 8;

• VQUIT = 9;

6.2. LINE DISCIPLINES. 85

• VSUSP = 10;

• VDSUSP = 11;

• VSTART = 12;

• VSTOP = 13;

• VLNEXT = 14;

• VDISCARD = 15;

• VMIN = 16;

• VTIME = 17;

• VSTATUS = 18;

• second spare = 19.

c_ispeed,c_ospeed are the input and output spped in baud. Standard values are:

• B0 = 0 Bd;

• B50 = 50 Bd;

• B75 = 75 Bd;

• B110 = 110 Bd;

• B134 = 134 Bd;

• B150 = 150 Bd;

• B200 = 200 Bd;

• B300 = 300 Bd;

• B600 = 600 Bd;

• B1200 = 1200 Bd;

• B1800 = 1800 Bd;

• B2400 = 2400 Bd;

• B4800 = 4800 Bd;

• B9600 = 9600 Bd;

• B19200 = 19200 Bd;

• B38400 = 38400 Bd;

• B7200 = 7200 Bd;

• B14400 = 14400 Bd;

• B28800 = 28800 Bd;

• B57600 = 57600 Bd;

• B76800 = 76800 Bd;

• B115200 = 115200 Bd;

• B230400 = 230400 Bd;

• EXTA = 19200 Bd;

• EXTB = 38400 Bd.

Listing 6.5 shows a small program that turns off on ECHO and turn on BREAK then prints screenfuls
of the files named on its command line. The program pauses after each screenful and waits for the
reader to type any character to continue. Because the terminal is in BREAK mode, the read will
return immediately. When all files have been displayed, the program resets the terminal modes and
exits. This is a primitive version of the OpenBSD less command.

86 CHAPTER 6. DEVICE I/O CONTROL.

Listing 6.5: pager - simple file paginator.

1 /* -*- mode: c-mode; -*- */
2
3 /* pager.c file. */
4 #include <stdio.h>
5 #include <stdlib.h>
6 #include <string.h>
7 #include <unistd.h>
8 #include <fcntl.h>
9 #include <errno.h>

10 #include <termios.h>
11 #include <sys/ioctl.h>
12 #include <sys/tty.h>
13 #include <sys/ttycom.h>
14
15 /* pager program. */
16 #define FOREVER for (;;)
17
18 /* Functions prototypes. */
19 void prompt(void);
20 long int more(char *);
21 int main(int , char *[]);
22
23 /* Main function. */
24 int main(int argc , char *argv [])
25 {
26 int fd, i;
27 long int ret = EXIT_FAILURE;
28 struct termios old_tos , new_tos;
29
30 /* Check arguments count. */
31 if(argc >= 2) {
32 if((fd = open("/dev/tty", O_RDWR | O_NOCTTY)) >= 0) {
33
34 /* Retrieve terminal informations. */
35 if(ioctl(fd, TIOCGETA , &old_tos) >= 0) {
36 memcpy ((void *) &new_tos , (void *) &old_tos , sizeof(

struct termios));
37 new_tos.c_iflag &= ~IGNBRK; /* not ignore BREAK. */
38 new_tos.c_lflag &= ~ECHO; /* disable ECHO. */
39 new_tos.c_lflag &= ~ISIG; /* disable signals: INTR ,

QUIT , DSUSP , SUSP. */
40 if(ioctl(fd, TIOCSETA , &new_tos) >= 0) {
41
42 /* Printout files. */
43 while(--argc)
44 if(more (*++ argv) == EXIT_FAILURE)
45 break;
46
47 /* Reset the terminal configuration. */
48 if(ioctl(fd, TIOCSETA , &old_tos) >= 0)
49 ret = EXIT_SUCCESS;

6.2. LINE DISCIPLINES. 87

50 else
51 perror("pager:␣failed␣to␣set␣old␣termios");
52 } else
53 perror("pager:␣failed␣to␣set␣new␣termios");
54 } else
55 perror("pager:␣failed␣to␣get␣termios");
56 close(fd);
57 } else
58 perror("pager:␣could␣not␣open␣tty");
59 } else
60 fprintf(stderr , "Usage:␣%s␣file␣[␣file1␣...␣]\n", *argv);
61 exit(ret);
62 }
63
64 /*
65 * more -- print out characters.
66 */
67 long int more(char *name)
68 {
69 long int ret = EXIT_FAILURE;
70 FILE *fp;
71 int line;
72 char line_buf[BUFSIZ];
73
74 /* Check arguments. */
75 if(name) {
76
77 /* Open the file to print. */
78 if((fp = fopen(name , "r")) != NULL) {
79 FOREVER {
80 line = 1;
81 while(line < 24) {
82
83 /*
84 * If end -of-file , let them hit a key one
85 * more time and then go back.
86 */
87 if(fgets(line_buf , BUFSIZ , fp) != NULL) {
88 fwrite(line_buf , 1, strlen(line_buf), stdout);
89 line ++;
90 } else {
91 fclose(fp);
92 ret = EXIT_SUCCESS;
93 prompt ();
94 return ret;
95 }
96 }
97 prompt ();
98 }
99 } else

100 fprintf(stderr , "Could␣not␣open␣%s\n", name);
101 }

88 CHAPTER 6. DEVICE I/O CONTROL.

102 return ret;
103 }
104
105 /*
106 * prompt -- handle interaction with user.
107 */
108 void prompt(void)
109 {
110 int answer;
111
112 printf("Type␣any␣character␣for␣next␣page:␣");
113 answer = getchar ();
114 putchar(’\n’);
115 }
116
117 /* End of pager.c file. */

There are many, many more things which may be done with the ioctl system call, including
magnetic tape, network routing changes, harddisk and cdrom drives, etc.. All of the operations are
described in the various manual pages contained in Section 4 of the OpenBSD Manual Page. The
operations described here and used in the examples above are in tty(4).

6.3 The fcntl System Call.

The fcntl system call provides control over the properties of a file that is already open. It takes
a variable number of arguments. The first argument is a file descriptor to an open file, the second
argument is a command, described below and the third optional argument depends to the second
argument: is technically a pointer to void, but is interpreted as an int by some commands, a
pointer to a structure of type flock by others and ignored by the rest. The commands are:

F_DUPFD return a new descriptor as follows:

• lowest numbered available descriptor greater than or equal to arg,
interpreted as an int;

• Same object references as the original descriptor;

• New descriptor shares the same file offset if the object was a file;

• Same access mode: read, write or read/write;

• Same file status flags, i.e., both file descriptors share the same file
status flags;

• The close-on-exec flag associated with the new file descriptor is set
to remain open across execve(2) calls.

F_DUPFD_CLOEXEC like F_DUPFD, but the FD_CLOEXEC flag associated with the new file de-
scriptor is set, so the file descriptor is closed when execve(2) is called;

F_GETFD get the close-on-exec flag associated with the file descriptor fd as FD_CLOEXEC.
If the returned value ANDed with FD_CLOEXEC is 0, the file will remain open
across exec, otherwise the file will be closed upon execution of exec where
the third optional argument is ignored;

F_SETFD set the close-on-exec flag associated with the file descriptor to the op-
tional third argyment, where this, interpreted an an int, is either 0 or
FD_CLOEXEC, as described above;

6.3. THE FCNTL SYSTEM CALL. 89

F_GETFL get file status flags associated with the file descriptor, as described below
where the third optional argument is ignored. The flags for this commands
are:

• O_NONBLOCK — non-blocking I/O; if no data is available to a read(2)
call, or if a write(2) operation would block, the read or write call
returns -1 with the error EAGAIN;

• O_APPEND— force each write to append at the end of file; corresponds
to the O_APPEND flag of open(2);

• O_ASYNC — enable the SIGIO signal to be sent to the process group
when I/O is possible, e.g., upon availability of data to be read;

• O_SYNC — cause writes to be synchronous. Data will be written to
the physical device instead of just being stored in the buffer cache;
corresponds to the O_SYNC flag of open(2).

F_SETFL Set file status flags associated with the file descriptor to third optional ar-
gument which is interpreted an int. For the flags in use with this command
see F_GETFL in the previous item;

F_GETOWN get the process ID or process group currently receiving SIGIO and SIGURG
signals; process groups are returned as negative values, the third optional
argument is ignored;

F_SETOWN set the process or process group to receive SIGIO and SIGURG signals;
process groups are specified by supplying the third optional argument, in-
trpreted as an int, as negative, otherwise it is taken as a process id.

The flock structure is described as follows:

Listing 6.6: The flock structure.
struct flock {

off_t l_start;
off_t l_len;
pid_t l_pid;
short l_type;
short l_whence;

};

l_start is the starting offset;

l_len is the length of the file, if is equal to 0 it means until the end of file;

l_pid lock the owner;

l_type lock the read and write, etc.;

l_whence member is the type of l_start.

The flock system call apply or remove and advisory lock on open file. It takes two arguments.
The first argument is the file descriptor for the open file. The second argument is one of:

• LOCK_SH — apply a shared lock;

• LOCK_EX — apply an exclusive lock;

90 CHAPTER 6. DEVICE I/O CONTROL.

• LOCK_UN — remove an existing lock.

LOCK_SH and LOCK_EXmay be combined with the optional LOCK_NB for nonblocking mode. Advisory
locks allow cooperating processes to perform consistent operations on files, but do not guarantee
consistency, i.e., processes may still access files without using advisory locks possibly resulting in
inconsistencies. The locking mechanism allows two types of locks: shared locks and exclusive locks.
At any time multiple shared locks may be applied to a file, but at no time are multiple exclusive, or
both shared and exclusive, locks allowed simultaneously on a file. A shared lock may be upgraded to
an exclusive lock, and vice versa, simply by specifying the appropriate lock type; this results in the
previous lock being released and the new lock applied, possibly after other processes have gained
and released the lock. Requesting a lock on an object that is already locked normally causes the
caller to be blocked until the lock may be acquired. If operation is the bitwise OR of LOCK_NB and
LOCK_SH or LOCK_EX, then this will not happen; instead the call will fail and the error EWOULDBLOCK
will be returned. Locks are on files, not file descriptors. That is, file descriptors duplicated through
dup(2) or fork(2) do not result in multiple instances of a lock, but rather multiple references to
a single lock. If a process holding a lock on a file forks and the child explicitly unlocks the file,
the parent will lose its lock. Processes blocked awaiting a lock may be awakened by signals. Upon
successful completion, the value 0 is returned; otherwise the value -1 is returned and the global
variable errno is set to indicate the error.

6.4 Non-blocking I/O.

Normally, when a process issued a read, that process is blocked until there is something to read.
That is, the process essentially goes to sleep until the read returns either the data read in, end-of-
file, or an error. This is not always desirable, however. By using the F_SETFL operation on fcntl,
it is possible to make reads, and other operations on the file descriptor, return an error immediately
if the operation would block. If this occurs, errno is set to EWOULDBLOCK. Examples of blocking
and non-blocking I/O are present in [4], in the networking case it is desirable to create and fork to
a thread for every connection in a server program. Just think to the telnet or ssh server: they are
stand alone server program, but allows a number of connections to them.

6.5 The select System Call.

The select system call is used to perform synchronous I/O multiplexing — that is, it enables the
programmer to manage reading and writing to several file descriptors at once without “blocking”
indefinitely on any of the operations. select is used by the programmer to check the status of
his open file descriptors before operating on them. For example, if the program continuously prints
information to the screen, but should also process any input the user types, the program can use
select to poll the terminal and when characters are present to be read, it can read them in and
process them. It takes five arguments: the first argument is the number of the last file descriptors
that should be processed: from 0 to this argument - 1 number. The second and third arguments
are pointers to the open file descriptors to read and to write respectively. The fourth argument is a
pointer to exceptional condition pending. The fifth argument is timeout, if it is a non-null pointer,
it specifies a maximum interval to wait for the selection to complete. If this argument is a null
pointer, the select blocks indefinitely. To effect a poll, the timeout argument should be non-null,
pointing to a zero-valued timeval structure. Timeout is not changed by select and may be reused
on subsequent calls; however, it is good style to re-initialize it before each invocation of select.
Exceptional conditions include the presence of out-of-band data on a socket. On return, select
replaces the given descriptor sets with subsets consisting of those descriptors that are ready for the
requested operation. It returns the total number of ready descriptors in all the sets. The descriptor
sets are stored as bit fields in arrays of integers. The following macros are provided for manipulating
such descriptor sets:

6.5. THE SELECT SYSTEM CALL. 91

• FD_ZERO(&fdset) – initializes a descriptor set fdset to the null set;

• FD_SET(fd, &fdset) – includes a particular descriptor fd in fdset;

• FD_CLR(fd, &fdset) – removes fd from fdset;

• FD_ISSET(fd, &fdset) – is non-zero if fd is a member of fdset, zero otherwise. The
behavior of these macros is undefined if a descriptor value is less than zero or greater than or
equal to FD_SETSIZE, which is normally at least equal to the maximum number of descriptors
supported by the system.

Any of the second, third and fourth arguments may be given as null pointers if no descriptors are
of interest. If successful, select return the number of ready descriptors that are contained in the
descriptor sets. If a descriptor is included in multiple descriptor sets, each inclusion is counted
separately. If the time limit expires before any descriptors become ready, they return 0. Otherwise,
if select return with an error, including one due to an interrupted call, they return -1, and the
descriptor sets will be unmodified.

Listing 6.7: select - program to demonstrate the select system call.
1 /* -*- mode: c-mode; -*- */
2
3 /* select.c file. */
4 #include <stdio.h>
5 #include <stdlib.h>
6 #include <string.h>
7 #include <unistd.h>
8 #include <fcntl.h>
9 #include <errno.h>

10 #include <termios.h>
11 #include <sys/types.h>
12 #include <sys/time.h>
13 #include <sys/ioctl.h>
14
15 /* select program. */
16 #define BUFFER_SIZE 32
17
18 /* Functions prototypes. */
19 int main(int , char *[]);
20
21 /* Main function. */
22 int main(int argc , char *argv [])
23 {
24 int n, nfds;
25 char buf[BUFFER_SIZE];
26 long int ret = EXIT_FAILURE;
27 fd_set readfds;
28 struct timeval tv;
29
30 /*
31 * We will be reading from standard input (file
32 * descriptor 0), so we want to know when the
33 * user has typed something.
34 */
35 FD_ZERO (& readfds);

92 CHAPTER 6. DEVICE I/O CONTROL.

36 FD_SET(0, &readfds);
37
38 /* Set the timeout for 10 seconds. */
39 bzero((void *) &tv, sizeof(struct timeval));
40 tv.tv_sec = 15;
41 tv.tv_usec = 0;
42
43 /* Prompt for input. */
44 printf("Type␣a␣word;␣if␣you␣don’t␣in␣10␣");
45 printf("seconds␣I’ll␣use␣\"WORD \":␣");
46 fflush(stdout);
47
48 /*
49 * Now call select. We pass NULL for
50 * writefds and exceptfds , since we
51 * aren’t interested in them.
52 */
53 nfds = select(1, &readfds , NULL , NULL , &tv);
54
55 /*
56 * Now we check the results. If nfds is zero ,
57 * then we timed out and should assume the
58 * default. Otherwise , if file descriptor 0
59 * is set in readfds , that means that it is
60 * ready to be read and we can read something
61 * from it.
62 */
63 if(nfds == 0)
64 strncpy(buf , "WORD", 5);
65 else
66 if(FD_ISSET(0, &readfds)) {
67 n = read(0, buf , BUFFER_SIZE);
68 buf[n > 0 ? n - 1 : 0] = ’\0’;
69 }
70 printf("\nThe␣word␣is:␣%s\n", buf);
71
72 /*
73 * This is not useful , but since we use this
74 * method to return success or failure , just
75 * go on.
76 */
77 ret = EXIT_SUCCESS;
78 exit(ret);
79 }
80
81 /* End of select.c file. */

Chapter 7

Information About Users.

The Login Name.
The User Id.
The Group Id.
Reading the Password File.
Reading the Password File.
Reading the /var/run/utmp and /var/log/wtmp
Files.

Several pieces of information are maintained about each user of the system. Most of this information
is stored in the password file /etc/passwd and the group file /etc/group. This chapter describes
each piece of information, what the operating system uses ir for and how programs can access and
change it.

7.1 The Login Name.

Each user on the system is given a unique login name. It is recommended that login names
contain only lowercase characters and digits. They may also contain uppercase characters, non-
leading hyphens, periods, underscores, and a trailing ‘$’. Login names may not be longer than 31
characters1. A user uses his login name to identify himself/herself to the system when logging in.
Login names are also used for the electronic mail system, to label output printed on a networked
printer, etc.. OpenBSD kernel does not use the login name for anything: it is only used by user-level
programs. To obtain the login name of the user executing a program, this may use the getlogin
routine, see the getlogin(2) manual entry. It takes no argument and if the call to he routine
succeeds, it returns a pointer to a NUL- terminated string in a static buffer. If the name has not
been set, it returns NULL.

7.2 The User Id.

Each process in the system is associated with in two integers number called the real user id and
the effective user id. These numbers are used by OpenBSD kernel to determine the process’s
access permissions, record accounting information, etc.. The real user id always identifies the user
executing the process. Only the super-user may change his real user id, thus becoming another
user. The effective user id is used to determine the process’s permissions. Normally, the effective
user id is equal to the real user id. By changing its effective user id, a process gains the permissions
associated with the new user id and, at least temporarily, loses those associated with its real user id.

1See adduser(8).

93

94 CHAPTER 7. INFORMATION ABOUT USERS.

A user id is always unique and refers to only one user of the system. The getuid function returns
the real user id of the calling process. The geteuid function returns the effective user id of the
calling process. The real user id is that of the user who has invoked the program. As the effective
user id gives the process additional permissions during execution of set-user-ID mode processes,
getuid is used to determine the real user id of the calling process. The getuid and geteuid
functions are always successful, and no return value is reserved to indicate an error. The real and
effective user ids are changed using setuid and seteuid system calls respectively. They take one
argument of uid_t type. The setuid function sets the real and effective user ids and the saved
set-user-ID of the current process to the specified value. The setuid function is permitted if the
effective user id is that of the super-user, or if the specified user id is the same as the effective user
id. If not, but the specified user id is the same as the real user id, setuid will set the effective user
id to the real user id. The seteuid function sets the effective user id of the current process. The
effective user id may be set to the value of the real user id or the saved set-user-ID, see intro(2) and
execve(2); in this way, the effective user id of a set-user-ID executable may be toggled by switching
to the real user id, then re-enabled by reverting to the set-user-ID value. The setuid and seteuid
functions return the value 0 if successful; otherwise the value -1 is returned and the global variable
errno is set to indicate the error.

7.3 The Group Id.

In addition to the real and effective user ids, OpenBSD system associates a real group id and an
effective group id with each process. These numbers are entirely analogous to the real and effective
user ids, with the exception that they do not uniquely identify a specific user. Instead, several users
may be members of the same group, permitting them to have access to files owned by that group
while denying others access. To get the real group id and the effective group id of the calling process
we use getgid and getegid respectively. They take no arguments. The real group id is specified
at login time and it is the group of the user who invoked the program. As the effective group
id gives the process additional permissions during the execution of set-group-ID mode processes,
getgid is used to determine the real group id of the calling process. The setgid function sets the
real and effective group ids and the saved set-group-ID of the current process to the specified value.
The setgid function is permitted if the effective user id is that of the super-user, or if the specified
group id is the same as the effective group id. If not, but the specified group id is the same as
the real group id, setgid will set the effective group id to the real group id. Supplementary group
ids remain unchanged. The setegid function sets the effective group id of the current process.
The effective group id may be set to the value of the real group id or the saved set-group-ID; in
this way, the effective group id of a set-group-ID executable may be toggled by switching to the
real group id, then re-enabled by reverting to the set-group-ID value. The setgid and setegid
functions return the value 0 if successful; otherwise the value -1 is returned and the global variable
errno is set to indicate the error.

7.3.1 The OpenBSD Group Mechanism.

A user could be in more groups at once and the processes he executes have the permissions asso-
ciated with all those groups instead of only one at a time. In order to manipulate this mechanism,
there are two system calls: getgroups and setgroups. getgroups takes two arguments and
gets the current group access list of the current user process and stores it in the array pointed
by the second argument of type gid_t. The first argument of type int indicates the number of
entries that may be placed in the array pointed by the second argument. getgroups returns the
actual number of groups returned in the second argument. No more than NGROUPS_MAX will ever
be returned. If the first argument is 0, getgroups returns the number of groups without modifying
the second argument array. A successful call returns the number of groups in the group set. A
value of -1 indicates that an error occurred, and the error code is stored in the global variable

7.4. READING THE PASSWORD FILE. 95

errno. Likewise setgroups sets the group access list of the current user process according to the
array pointed by the second argument of type gid_t. The first argument, a parameter of type
int, indicates the number of entries in the the second argument array and must be no more than
NGROUPS_MAX. Only the super-user may set new groups. Upon successful completion, the value 0
is returned; otherwise the value -1 is returned and the global variable errno is set to indicate the
error.

7.4 Reading the Password File.

The password file contains almost all the information commonly maintained about each user of
the system. A super-user accessible only file is /etc/master.passwd consists of newline-separated
records, one per user, containing ten colon-separated fields. These fields are as follows:

name user’s login name;

password user’s encrypted password;

uid user’s login user id;

gid user’s login group id;

class user’s general classification, see login.conf (5);

change password change time;

expire account expiration time;

gecos general information about the user;

home_dir user’s home directory;

shell user’s login shell.

The publicly-readable password file is generated from the /etc/master.passwd and resides in /etc/-
passwd. Each line in the file describes a separate user. The differences between these two files are
that the latter lacks class, change, expire fields removed and the password field is replaced with
and asterisk ’*’. To operate on the password database file which is described in passwd(5) there
are several system calls: getpwnam and getpwuid are some of these. Each entry of this database
are in the structure passwd defined in the include file <pwd.h>:

Listing 7.1: The passwd structure.
struct passwd {

char *pw_name;
char *pw_passwd;
uid_t pw_uid;
gid_t pw_gid;
time_t pw_change;
char *pw_class;
char *pw_gecos;
char *pw_dir;
char *pw_shell;
time_t pw_expire;

};

pw_name is the user name string;

96 CHAPTER 7. INFORMATION ABOUT USERS.

pw_passwd is a string containing an encrypted password;

pw_uid user id

pw_gid group id;

pw_change is the last change time;

pw_class is the user access class;

is the Honeywell login info string;

pw_gecos2pw_dir is the user home directory path;

pw_shell is the user shell interpreter path;

pw_expire is the expiration date for the user account.

Several routines are provided to read the password file; all of them return a pointer to structure of
type passwd, or NULL on end-of-file or error3. It points to static data that is overwritten at each
call; programs must copy the data into another structure if it is to be saved. The getpwent routine
requires no arguments and returns the next entry in the password file, reading sequentially from
the beginning. getpwuid takes a numeric user id as an argument and returns the entry for that
user id. getpwnam takes a pointer to a character string containing a login name as an argument
and returns the entry for that login name. The routines setpwent and endpwent are used to open
and close the password file respectively. These should be used to rewind the password file and
“reset” the getpwent routine. Listing 7.2 shows the usage of the routines setpwent, endpwent
and getpwent.

Listing 7.2: passwd - program to demonstrate the password database system calls.
1 /* -*- mode: c-mode; -*- */
2
3 /* passwd.c file. */
4 #include <stdio.h>
5 #include <stdlib.h>
6 #include <string.h>
7 #include <unistd.h>
8 #include <errno.h>
9 #include <pwd.h>

10
11 /* passwd program. */
12 /* Functions prototypes. */
13 int main(int , char *[]);
14
15 /* Main function. */
16 int main(int argc , char *argv [])
17 {
18 long int ret = EXIT_FAILURE;
19 struct passwd *pw;
20
21 /* Open the password database file. */
22 setpwent ();
23 do {

3“entry not found” is considered an error.

7.5. READING THE GROUP FILE. 97

24 pw = getpwent ();
25 if(pw) {
26 printf("user␣name:␣%s,␣", pw -> pw_name);
27 printf("user␣id:␣%d,␣", pw -> pw_uid);
28 printf("group␣id:␣%d\n", pw -> pw_gid);
29 }
30 } while(pw);
31 ret = EXIT_SUCCESS;
32
33 /* Close the password database file. */
34 endpwent ();
35 exit(ret);
36 }
37
38 /* End of passwd.c file. */

7.5 Reading the Group File.

The group file, /etc/group, also contains lines of colon-separated fields. These lines are described
by the group structure, defined in the include file <grp.h>:

Listing 7.3: The group structure.
struct group {

char *gr_name;
char *gr_passwd;
gid_t gr_gid;
char ** gr_mem;

};

The fields are:

gr_name the name of the group;

gr_passwd the encrypted password for the group. The field is almost always left blank. If
non-blank, then the newgrp command prompts for a password before permitting
a user to change to this group. Because of the group mechanism, this field is
meaningless in OpenBSD;

gr_gid the numeric group id of the group;

gr_mem pointers to the login names of the members of the group. The list is null-
terminated.

The routines to read the group file are patterned directly after those to read the password file. All
the routines return a pointer to a structure of type group or NULL on error/end. The routines
are called getgrent, getgrgid and getgrnam. The routines setgrent and endgrent are also available.
Listing 7.4 provides an example of usage for the system calls to handle the groups database.

Listing 7.4: group - program to demonstrate the group database system calls.
1 /* -*- mode: c-mode; -*- */
2
3 /* group.c file. */
4 #include <stdio.h>
5 #include <stdlib.h>

98 CHAPTER 7. INFORMATION ABOUT USERS.

6 #include <string.h>
7 #include <unistd.h>
8 #include <errno.h>
9 #include <grp.h>

10
11 /* group program. */
12
13 /* Functions prototypes. */
14 int main(int , char *[]);
15
16 /* Main function. */
17 int main(int argc , char *argv [])
18 {
19 long int ret = EXIT_FAILURE;
20 struct group *grp;
21 char ** members;
22
23 /* Open the group database file. */
24 setgrent ();
25 do {
26 grp = getgrent ();
27 if(grp) {
28 printf("group␣name:␣%s,␣", grp -> gr_name);
29 printf("group␣password:␣%s,␣", grp -> gr_passwd);
30 printf("group␣id:␣%d\n", grp -> gr_gid);
31 printf("group␣members:␣");
32 members = grp -> gr_mem;
33 while(* members) {
34 printf("%s", *members ++);
35 if(* members)
36 printf(",␣");
37 }
38 printf("\n");
39 }
40 } while(grp);
41 endgrent ();
42 ret = EXIT_SUCCESS;
43 exit(ret);
44 }
45
46 /* End of group.c file. */

7.6 Reading the /var/run/utmp and /var/log/wtmp Files.

The file /var/run/utmp contains a record of all users currently logged in on the system. The
<utmp.h> file declares the structures used to record information about current users in the utmp
file, logins and logouts in the wtmp file, and last logins in the lastlog file. The timestamps of date
changes, shutdowns, and reboots are also logged in the wtmp file. wtmp file can grow rapidly on
busy systems, so daily or weekly rotation is recommended. If any one of these files does not exist,
it is not created. They must be created manually and are maintained by newsyslog(8).

7.6. READING THE /VAR/RUN/UTMP AND /VAR/LOG/WTMP FILES. 99

Listing 7.5: The lastlog and utmp structures.
#define _PATH_UTMP "/var/run/utmp"
#define _PATH_WTMP "/var/log/wtmp"
#define _PATH_LASTLOG"/var/log/lastlog"

#define UT_NAMESIZE 32
#define UT_LINESIZE 8
#define UT_HOSTSIZE 256

struct lastlog {
time_t ll_time;
char ll_line[UT_LINESIZE];
char ll_host[UT_HOSTSIZE];

};

struct utmp {
char ut_line[UT_LINESIZE];
char ut_name[UT_NAMESIZE];
char ut_host[UT_HOSTSIZE];
time_t ut_time;

};

To read the /var/run/utmp file just open it as showed in the previous chapters. Listing 7.6 shows
how to read the utmp file.

Listing 7.6: utmp - program to read /var/run/utmp.
1 /* -*- mode: c-mode; -*- */
2
3 /* utmp.c file. */
4 #include <stdio.h>
5 #include <stdlib.h>
6 #include <string.h>
7 #include <unistd.h>
8 #include <fcntl.h>
9 #include <errno.h>

10 #include <time.h>
11 #include <utmp.h>
12
13 /* utmp program. */
14 /* Functions prototypes. */
15 int main(int , char *[]);
16
17 /* Main function. */
18 int main(int argc , char *argv [])
19 {
20 int fd;
21 long int ret = EXIT_FAILURE;
22 struct utmp record;
23
24 /* Open the /va/run/utmp file. */
25 if((fd = open(_PATH_UTMP , O_RDONLY)) >= 0) {
26 while(read(fd, (void *) &record , sizeof(struct utmp)) > 0) {
27 if(record.ut_name[0] != ’\0’) {

100 CHAPTER 7. INFORMATION ABOUT USERS.

28 printf("line:␣%.*s,␣", UT_LINESIZE , record.ut_line);
29 printf("name:␣%.*s,␣", UT_NAMESIZE , record.ut_name);
30 printf("name:␣%.*s,␣", UT_HOSTSIZE , record.ut_host);
31 printf("time:␣%s", ctime (& record.ut_time));
32 }
33 }
34 ret = EXIT_SUCCESS;
35 close(fd);
36 } else
37 perror("open␣/var/run/utmp");
38 exit(ret);
39 }
40
41 /* End of utmp.c file. */

Chapter 8

Time and Timing.

Time.
Sleeping and Alarm Clocks.
Process Timing.
Changing File Times.
Interval Timers.

This chapter covers a miscellany of topics unrelated but for the fact that they have to do with time:

• how OpenBSD system keeps track of time;

• how to put processes to sleep;

• how to determine how CPU time a process uses;

• how to change file modification times.

8.1 Time.

The OpenBSD operating system keeps track of the current date and time by storing the number
of seconds that have elapsed since January, 1, 1900 UTC1. The time is stored in a signed 64 bit
integer.

8.1.1 Obtaining the Time.

In the OpenBSD operating system the time call may be used to obtain the time of the day. This
function takes one argument and returns the number of seconds elapsed since Jan 1 1970 00:00:00
UTC. This value is also written to the memory pointed by the first argument of type time_t,
unless now is NULL. The time function is always successful, and no return value is reserved to
indicate an error. time, still useable, was replaced by gettimeofday routine. This function
writes the absolute value of the system’s Coordinated Universal Time (UTC) clock to the memory
pointed by the first argument, unless it is NULL. The UTC clock’s absolute value is the time
elapsed since Jan 1 1970 00:00:00 +0000 - the Epoch2. The clock normally advances continuously,
though it may jump discontinuously if a process calls settimeofday or clock_settime(2). For this
reason, gettimeofday is not generally suitable for measuring elapsed time. Whenever possible,
use clock_gettime(2) to measure elapsed time with one of the system’s monotonic clocks instead.
The settimeofday function sets the system’s UTC clock to the absolute value now unless now

1Coordinated Universal Time, also known as Greenwich Mean Time.
2Considered to be the UNIX birthday.

101

102 CHAPTER 8. TIME AND TIMING.

is NULL. Only the super-user may set the clock. If the system securelevel(7) is 2 or greater, the
clock may only be advanced. This limitation prevents a malicious super-user from setting arbitrary
timestamps on files. Setting the clock cancels any ongoing adjtime(2) adjustment. The structure
pointed to by the first argument is defined in the include file <sys/time.h> as:

Listing 8.1: The timeval structure.
struct timeval {

time_t tv_sec;
suseconds_t tv_usec;

};

tv_sec seconds elapsed from 1/1/1970;

tv_usec microseconds elapse from boot.

The second argument is historical: the system no longer maintains timezone information in the ker-
nel. This argument should always be NULL. gettimeofday zeroes it if it is not NULL. settimeofday
ignores the contents of this argument if it is not NULL. Listing 8.2 shows a program getting the
time-of-the-day:

Listing 8.2: time - a program to show the time-of-the-day.
1 /* -*- mode: c-mode; -*- */
2
3 /* time.c file. */
4 #include <stdio.h>
5 #include <stdlib.h>
6 #include <string.h>
7 #include <unistd.h>
8 #include <fcntl.h>
9 #include <errno.h>

10 #include <time.h>
11 #include <sys/time.h>
12
13 /* time program. */
14 /* Functions prototypes. */
15 int main(int , char *[]);
16
17 /* Main function. */
18 int main(int argc , char *argv [])
19 {
20 long int ret = EXIT_FAILURE;
21 struct timeval now;
22
23 /* get -time -of -the -day. */
24 if(gettimeofday (&now , NULL) >= 0) {
25 printf("time␣in␣seconds:␣%lld ,␣", now.tv_sec);
26 printf("time␣in␣microseconds:␣%ld\n", now.tv_usec);
27 printf("date:␣%s\n", ctime (&now.tv_sec));
28 ret = EXIT_SUCCESS;
29 }
30 exit(ret);
31 }

8.1. TIME. 103

32
33 /* End of timer.c file. */

8.1.2 Timezones.

On the OpenBSD operating system the timezone information could be retrieved by localtime and
gmtime routines. They return pointers to tm structures, described below. localtime corrects for
the time zone and any time zone adjustments, such as Daylight Saving Time in the United States.
After filling in the tm structure, localtime sets the tm_isdst’th element of tzname to a pointer to
an ASCII string that’s the time zone abbreviation to be used with the return value of localtime.

Listing 8.3: The tm structure.
struct tm {

int tm_sec;
int tm_min;
int tm_hour;
int tm_mday;
int tm_mon;
int tm_year;
int tm_wday;
int tm_yday;
int tm_isdst;
long tm_gmtoff;
char *tm_zone;

};

tm_sec seconds after the minute [0 - 60];

tm_min minutes after the hour [0 - 59];

tm_hour hours since midnight [0 - 23];

tm_mday day of the month [1 - 31];

tm_mon months since January [0 - 11];

tm_year years since 1900;

tm_wday days since Sunday [0 - 6];

tm_yday days since January 1 [0 - 365];

tm_isdst Daylight Saving Time flag;

tm_gmtoff offset from UTC in seconds;

tm_zone timezone abbreviation.

Listing 8.4 shows how to retrieve the timezone for the machine executing the program.

Listing 8.4: timezone - a program to show the time-of-the-day and timezone.
1 /* -*- mode: c-mode; -*- */
2
3 /* timezone.c file. */
4 #include <stdio.h>

104 CHAPTER 8. TIME AND TIMING.

5 #include <stdlib.h>
6 #include <string.h>
7 #include <unistd.h>
8 #include <fcntl.h>
9 #include <errno.h>

10 #include <time.h>
11 #include <sys/time.h>
12
13 /* timezone program. */
14 /* Functions prototypes. */
15 int main(int , char *[]);
16
17 /* Main function. */
18 int main(int argc , char *argv [])
19 {
20 long int ret = EXIT_FAILURE;
21 struct timeval now;
22 struct tm *tm_val;
23
24 /* get -time -of -the -day. */
25 if(gettimeofday (&now , NULL) >= 0) {
26 if((tm_val = localtime (&now.tv_sec)) != NULL) {
27 printf("seconds:␣%d,␣", tm_val -> tm_sec);
28 printf("minutes:␣%d,␣", tm_val -> tm_min);
29 printf("hours:␣%d,␣", tm_val -> tm_hour);
30 printf("day␣of␣month:␣%d,␣", tm_val -> tm_mday);
31 printf("month:␣%d,␣", tm_val -> tm_mon);
32 printf("year:␣%d,␣", tm_val -> tm_year);
33 printf("weekday:␣%d,␣", tm_val -> tm_wday);
34 printf("day␣of␣year:␣%d\n", tm_val -> tm_yday);
35 printf("summer␣time␣in␣effect?␣%d\n", tm_val -> tm_isdst);
36 printf("offset␣from␣UTC␣in␣seconds:␣%ld\n", tm_val ->

tm_gmtoff);
37 printf("timezone␣name:␣%s\n", tm_val -> tm_zone);
38 ret = EXIT_SUCCESS;
39 } else
40 perror("Could␣not␣get␣local␣time");
41 } else
42 perror("Could␣not␣get␣time -of-the -day");
43 exit(ret);
44 }
45
46 /* End of timezone.c file. */

8.1.3 Time Differences.

By using gmtime, difftime and asctime routines, it is possible to convert the difference between
two times to ASCII. For example, to see how long a user was logged in, his login time can be
subtracted from his logout time. This difference can then be taken as UTC and converted to
an ASCII string. The hours minutes and seconds fields of this result will represent the difference
between the two times, modulo 24 hours. Listing 8.5 shows a program that computes the last
session time for a user.

8.1. TIME. 105

Listing 8.5: difftime - a program to compute the session time of a user.

1 /* -*- mode: c-mode; -*- */
2
3 /* difftime.c file. */
4 #include <stdio.h>
5 #include <stdlib.h>
6 #include <string.h>
7 #include <unistd.h>
8 #include <fcntl.h>
9 #include <errno.h>

10 #include <time.h>
11 #include <utmp.h>
12 #include <sys/types.h>
13 #include <sys/time.h>
14
15 /* difftime program. */
16 /* Functions prototypes. */
17 int main(int , char *[]);
18
19 /* Main function. */
20 int main(int argc , char *argv [])
21 {
22 int fd_wtmp;
23 long int ret = EXIT_FAILURE;
24 double d;
25 off_t lp = 0;
26 struct utmp tmp_record , login_record , logout_record;
27
28 /* Open the /va/run/utmp file. */
29 if(argc == 2) {
30 if((fd_wtmp = open(_PATH_WTMP , O_RDONLY)) >= 0) {
31 bzero((void *) &login_record , sizeof(struct utmp));
32 while(read(fd_wtmp , (void *) &tmp_record , sizeof(struct

utmp)) > 0) {
33 if(tmp_record.ut_name[0] != ’\0’) {
34 if(strncmp ((const char *) argv[1], (const char *)

tmp_record.ut_name , UT_NAMESIZE) == 0) {
35 lp = lseek(fd_wtmp , 0, SEEK_CUR);
36 memcpy ((void *) &login_record , (void *) &tmp_record ,

sizeof(struct utmp));
37 }
38 }
39 }
40 if(lp >= 0) {
41 if(login_record.ut_name[0] != ’\0’) {
42 printf("Found␣login␣name:␣%s␣in␣position␣%d.\n", argv[

1], lp);
43 if(lseek(fd_wtmp , lp, SEEK_SET) >= 0) {
44 bzero((void *) &logout_record , sizeof(struct utmp));
45 while(read(fd_wtmp , (void *) &tmp_record , sizeof(

struct utmp)) > 0) {
46 if(tmp_record.ut_name[0] == ’\0’) {

106 CHAPTER 8. TIME AND TIMING.

47 if(strncmp ((const char *) tmp_record.ut_line , (
const char *) login_record.ut_line ,
UT_LINESIZE) == 0) {

48 printf("found␣the␣corresponding␣logout␣entry␣
for␣%s...\n", argv[1]);

49 memcpy ((void *) &logout_record , (void *) &
tmp_record , sizeof(struct utmp));

50 break;
51 }
52 }
53 }
54 d = difftime(logout_record.ut_time , login_record.

ut_time);
55 printf("user␣%s␣last␣session␣time:␣%f␣s.\n", argv[1

], d);
56 } else
57 perror("Could␣not␣seek␣in␣/var/log/wtmp");
58 } else
59 fprintf(stderr , "no␣such␣login:␣%s\n", argv[1]);
60 } else
61 perror("Could␣not␣seek␣in␣/var/log/wtmp");
62 close(fd_wtmp);
63 } else
64 perror("Could␣not␣open␣/var/log/wtmp");
65 } else
66 fprintf(stderr , "Usage:␣difftime␣name\n");
67 exit(ret);
68 }
69
70 /* End of difftime.c file. */

8.2 Sleeping and Alarm Clocks.

8.2.1 Sleeping.

Many times it is necessary for a program to “go to sleep” for a period of time. For example, if
some condition must be checked, for example, every 20 minutes before checking things again. The
simplest way to do this is to use the sleep system call. The function suspends execution of the
calling thread until at least the given number of seconds have elapsed or an unmasked signal is
delivered. This version of sleep is implemented with nanosleep(2), so delivery of any unmasked
signal will terminate the sleep early, even if SA_RESTART is set with sigaction(2) for the interrupting
signal. It takes one argument an unsigned int representing the seconds to sleep. If sleep sleeps
for the full count of seconds, it returns 0. Otherwise, it returns the number of seconds remaining
from the original request. The function sets errno to EINTR if it is interrupted by the delivery of
a signal.

8.2.2 The Alarm Clock.

Another common need is to be advised when a given amount of time has elapsed, but to be able
to continue executing. For example, if a program is waiting for something that “might” happen,
it needs to know when it has waited long enough and should give up. To schedule an alarm, the
alarm system call should be used. The function schedules the SIGALRM signal for delivery to the

8.3. PROCESS TIMING. 107

calling process after the given number of seconds have elapsed. If an alarm is already pending,
another call to alarm will supersede the prior call. It takes one argument an unsigned int which
represent the number of seconds to trigger the alarm. If this argument is zero, any pending alarm
is cancelled. alarm returns the number of seconds remaining until the pending alarm would have
expired. If it has already expired, it was cancelled, or no alarm was ever scheduled, it returns zero.

8.3 Process Timing.

Top obtain information about the amount of processor time used by a process, the times system call
may be used. The function fills in the structure pointed to by tp with time- accounting information.
The tms structure is defined as follows:

Listing 8.6: The tms structure.
struct tms {

clock_t tms_utime;
clock_t tms_stime;
clock_t tms_cutime;
clock_t tms_cstime;

};

The elements of this structure are defined as follows:

tms_utime CPU time charged for the execution of user instructions;

tms_stime CPU time charged for execution by the system on behalf of the process;

tms_cutime sum of tms_utime and tms_cutime for all of the child processes;

tms_cstime sum of tms_stime and tms_cstime for all of the child processes.

All times are in CLK_TCKs of a second. The times of a terminated child process are included in the
tms_cutime and tms_cstime elements of the parent when one of the wait(2) functions returns the
process id of the terminated child to the parent. Upon successful completion, times returns the
value of real time, in CLK_TCKs of a second, elapsed since an arbitrary point in the past. This point
does not change between invocations of times so two such return values constitute a real time
interval. On failure, times returns (clock_t) -1 and the global variable errno is set to indicate
the error. Listing 8.7 shows the proper method to calculate the amount of CPU time required by
a given segment of code.

Listing 8.7: cputime - measure cpu time used by a section of code.
1 /* -*- mode: c-mode; -*- */
2
3 /* cputime.c file. */
4 #include <stdio.h>
5 #include <stdlib.h>
6 #include <string.h>
7 #include <unistd.h>
8 #include <fcntl.h>
9 #include <errno.h>

10 #include <time.h>
11 #include <utmp.h>
12 #include <sys/types.h>
13 #include <sys/time.h>
14 #include <sys/times.h>

108 CHAPTER 8. TIME AND TIMING.

15
16 /* cputime program. */
17 /* Functions prototypes. */
18 int main(int , char *[]);
19
20 /* Main function. */
21 int main(int argc , char *argv [])
22 {
23 int i, temp , prev , succ;
24 long int ret = EXIT_FAILURE;
25 struct tms before , after;
26
27 /* Get current time. */
28 times(& before);
29
30 /* some code. */
31 for(i = 1; i < rand(); i++) {
32 prev = 1;
33 succ = 2;
34 do {
35 printf("%d\n", prev);
36 temp = prev + succ;
37 prev = succ;
38 succ = temp;
39 } while(succ < 1836311903);
40 }
41 ret = EXIT_SUCCESS;
42
43 /* Get time after computation. */
44 times(& after);
45 printf("User␣time:␣%lld␣seconds .\n", after.tms_utime - before.

tms_utime);
46 printf("System␣time:␣%lld␣seconds .\n", after.tms_stime - before

.tms_stime);
47 exit(ret);
48 }
49
50 /* End of cputime.c file. */

8.4 Changing File Times.

OpenBSD provides several systems call to set file access and modification times. Let’s consider the
utimes routine. It takes two arguments. The first argument is a pointer to the character string
containing the path of the file. The second argument is an array of type timeval of size 2. This
contains the new access time as first value and the modification time as second value in the array.
If the second argument is NULL, the access and modification times are set to the current time. The
caller must be the owner of the file, have permission to write the file, or be the super-user. In either
case, the file status change time is set to the current time. Upon successful completion, the value 0
is returned; otherwise the value -1 is returned and the global variable errno is set to indicate the
error.

8.5. INTERVAL TIMERS. 109

8.5 Interval Timers.

On OpenBSD there are more general mechanism called interval timers. They are maintained in
structures of type itimerval defined in the include file <sys/time.h>:

Listing 8.8: The itimerval structure.
#define ITIMER_REAL 0
#define ITIMER_VIRTUAL 1
#define ITIMER_PROF 2

struct itimerval {
struct timeval it_interval;
struct timeval it_value;

};

it_interval field specifies the number of seconds and microseconds before the timer should
expire; if these values are zero the timer is disabled;

it_value specifies the values the timer should be reset to when expires; if these are zero the
timer will not be reset.

The system provides each process with three interval timers, defined in <sys/time.h>. The
getitimer call needs two arguments and returns the current value for the kind of timer specified
in the first argument from the array pointed by the second argument. The setitimer takes three
arguments. The first two arguments are the same of the getitimer system call, the third value
is a pointer to the itimerval structure which update the indicated value, returning the previous
value of the timer if the new value is non-null. Setting it_value to 0 disables a timer and setting
it_interval to 0 causes a timer to be disabled after its next expiration, assuming it_value
is non-zero. Time values smaller than the resolution of the system clock are rounded up to this
resolution3. The ITIMER_REAL timer decrements in real time. A SIGALRM signal is delivered when
this timer expires. The ITIMER_VIRTUAL timer decrements in process virtual time. It runs only
when the process is executing. A SIGVTALRM signal is delivered when it expires. The ITIMER_PROF
timer decrements both in process virtual time and when the system is running on behalf of the
process. It is designed to be used by interpreters in statistically profiling the execution of interpreted
programs. Each time the ITIMER_PROF timer expires, the SIGPROF signal is delivered. Because
this signal may interrupt in-progress system calls, programs using this timer must be prepared to
restart interrupted system calls. Upon successful completion, the value 0 is returned; otherwise the
value -1 is returned and the global variable errno is set to indicate the error.

3Typically 10 milliseconds.

Chapter 9

Processing Signals.

Overview of Signal Handling.
The Signals.
Sending Signals.
Catching and Ignoring Signals.
Using Signals for Timeouts.
The OpenBSD Signal Mechanism.

Signals are software interrupts that are delivered to processes to inform them of abnormal events
occuring in their environment. Some signals such as floating point exception, have a direct coun-
terparts in the computer hardware; other signals, such as change in child process status, are purely
software-oriented. In OpenBSD most of the signals cause a process to terminate when they are
received. Depending on the signal, the memory image of the executing process may be placed on
the disk in the file core. This is the familiar core dump; it is often useful when debugging a broken
program.

9.1 Overview of Signal Handling.

OpenBSD system defines a set of signals that may be delivered to a process. Signal delivery
resembles the occurrence of a hardware interrupt:

1. the signal is normally blocked from further occurrence;

2. the current process context is saved, and a new one is built.

A process may specify a handler to which a signal is delivered, or specify that a signal is to be
ignored. A process may also specify that a default action is to be taken by the system when a signal
occurs. A signal may also be blocked, in which case its delivery is postponed until it is unblocked.
The action to be taken on delivery is determined at the time of delivery. Normally, signal handlers
execute on the current stack of the process. This may be changed, on a per-handler basis, so that
signals are taken on a special signal stack. Signal routines normally execute with the signal that
caused their invocation blocked, but other signals may yet occur. A global signal mask defines
the set of signals currently blocked from delivery to a process. The signal mask for a process is
initialized from that of its parent, normally empty. It may be changed with a sigprocmask(2) call,
or when a signal is delivered to the process. When a signal condition arises for a process, the signal
is added to a set of signals pending for the process. If the signal is not currently blocked by the
process then it is delivered to the process. Signals may be delivered any time a process enters the
operating system1. If multiple signals are ready to be delivered at the same time, any signals that

1E.g., during a system call, page fault or trap, or clock interrupt.

111

112 CHAPTER 9. PROCESSING SIGNALS.

could be caused by traps are delivered first. Additional signals may be processed at the same time,
with each appearing to interrupt the handlers for the previous signals before their first instructions.
The set of pending signals is returned by the sigpending(2) function. When a caught signal is
delivered, the current state of the process is saved, a new signal mask is calculated, as described
below and the signal handler is invoked. The call to the handler is arranged so that if the signal
handling routine returns normally the process will resume execution in the context from before the
signal’s delivery. If the process wishes to resume in a different context, then it must arrange to
restore the previous context itself. When a signal is delivered to a process, a new signal mask is
installed for the duration of the process’s signal handler, or until a sigprocmask(2) call is made.
This mask is formed by taking the union of the current signal mask set, the signal to be delivered,
and the signal mask sa_mask associated with the handler to be invoked, but always excluding
SIGKILL and SIGSTOP.

9.1.1 The sigaction interface.

The following structure, defined in <signal.h> allow the programmer to configure the behaviour
of the process in response to signals coming in.

Listing 9.1: The sigaction structure.

struct sigaction {
union {

void (* __sa_handler)(int);
void (* __sa_sigaction)(int , siginfo_t *, void *);

} __sigaction_u;
sigset_t sa_mask;
int sa_flags;

};

The system call sigaction assigns an action for a signal. It takes three arguments: the first
argument is the signal itself. If the second argument is non-zero, it specifies an action: SIG_DFL,
SIG_IGN, or a handler routine and mask to be used when delivering the specified signal. If the third
argument is non-zero, the previous handling information for the signal is returned to the user. Once
a signal handler is installed, it normally remains installed until another sigaction call is made,
or an execve(2) is performed. The value of sa_handler or, if the SA_SIGINFO flag is set, the
value of sa_sigaction instead, indicates what action should be performed when a signal arrives.
A signal-specific default action may be reset by setting sa_handler to SIG_DFL. Alternately, if
the SA_RESETHAND flag is set the default action will be reinstated when the signal is first posted.
The defaults are process termination, possibly with core dump; no action; stopping the process; or
continuing the process. If sa_handler is SIG_DFL, the default action for the signal is to discard
the signal, and if a signal is pending, the pending signal is discarded even if the signal is masked.
If sa_handler is set to SIG_IGN, current and pending instances of the signal are ignored and
discarded. If the first argument of sigaction is SIGCHLD and sa_handler is set to SIG_IGN,
the SA_NOCLDWAIT flag is implied. The signal mask sa_mask is typically manipulated using the
sigaddset(3) family of functions. Options may be specified by setting sa_flags. The meaning of
the various bits is as follows:

SA_NOCLDSTOP If this bit is set when installing a catching function for the SIGCHLD signal,
the SIGCHLD signal will be generated only when a child process exits, not
when a child process stops.

SA_NOCLDWAIT If this bit is set when calling sigaction for the SIGCHLD signal, the system
will not create zombie processes when children of the calling process exit,
though existing zombies will remain. If the calling process subsequently

9.2. THE SIGNALS. 113

issues a waitpid(2), or equivalent and there are no previously existing zom-
bie child processes that match the waitpid(2) criteria, it blocks until all of
the calling process’s child processes that would match terminate, and then
returns a value of -1 with errno set to ECHILD.

SA_ONSTACK If this bit is set, the system will deliver the signal to the process on a signal
stack, specified with sigaltstack(2).

SA_NODEFER If this bit is set, further occurrences of the delivered signal are not masked
during the execution of the handler.

SA_RESETHAND If this bit is set, the handler is reset back to SIG_DFL at the moment the
signal is delivered.

SA_SIGINFO If this bit is set, the second argument of the handler is set to be a pointer
to a siginfo_t structure as described in <sys/siginfo.h>. It provides
much more information about the causes and attributes of the signal that
is being delivered.

SA_RESTART If a signal is caught during the system calls listed below, the call may be
forced to terminate with the error EINTR, the call may return with a data
transfer shorter than requested, or the call may be restarted. Restarting of
pending calls is requested by setting the SA_RESTART bit in sa_flags. The
affected system calls include read(2), write(2), sendto(2), recvfrom(2),
sendmsg(2) and recvmsg(2) on a communications channel or a slow de-
vice2 and during a wait(2) or ioctl(2). However, calls that have already
committed are not restarted, but instead return a partial success, for ex-
ample, a short read count.

After a fork(2) or vfork(2), all signals, the signal mask, the signal stack, and the restart/interrupt
flags are inherited by the child. execve(2) reinstates the default action for SIGCHLD and all signals
which were caught; all other signals remain ignored. All signals are reset to be caught on the user
stack and the signal mask remains the same; signals that restart pending system calls continue to
do so. Upon successful completion, the value 0 is returned by sigaction; otherwise the value -1
is returned and the global variable errno is set to indicate the error.

9.2 The Signals.

OpenBSD provides the following signals with names as in the include file <signal.h>:

Table 9.1: List of available signals.

Name Value Default Action Description

SIGHUP 1 terminate process terminal line hangup

SIGINT 2 terminate process interrupt program

SIGQUIT 3 create core image quit program

SIGILL 4 create core image illegal instruction

SIGTRAP 5 create core image trace trap

2Such as a terminal, but not a regular file.

114 CHAPTER 9. PROCESSING SIGNALS.

Table 9.1: List of available signals.

Name Value Default Action Description

SIGABRT 6 create core image abort(3) call, for-
merly SIGIOT

SIGEMT 7 create core image emulate instruction
executed

SIGFPE 8 create core image floating-point excep-
tion

SIGKILL 9 terminate process kill program, cannot
be caught or ignored

SIGBUS 10 create core image bus error

SIGSEGV 11 create core image segmentation viola-
tion

SIGSYS 12 create core image system call given in-
valid argument

SIGPIPE 13 terminate process write on a pipe with
no reader

SIGALRM 14 terminate process real-time timer ex-
pired

SIGTERM 15 terminate process software termination
signal

SIGURG 16 discard signal urgent condition
present on socket

SIGSTOP 17 stop process stop, cannot be
caught or ignored

SIGTSTP 18 stop process stop signal gener-
ated from keyboard

SIGCONT 19 discard signal continue after stop

SIGCHLD 20 discard signal child status has
changed

SIGTTIN 21 stop process background read at-
tempted from con-
trolling terminal

SIGTTOU 22 stop process background write at-
tempted to control-
ling terminal

SIGIO 23 discard signal I/O is possible on a
descriptor3

SIGXCPU 24 terminate process CPU time limit ex-
ceeded4

3See fcntl(2).
4See setrlimit(2).

9.3. SENDING SIGNALS. 115

Table 9.1: List of available signals.

Name Value Default Action Description

SIGXFSZ 25 terminate process file size limit ex-
ceeded5

SIGVTALRM 26 terminate process virtual time alarm6

SIGPROF 27 terminate process profiling timer
alarm7

SIGWINCH 28 discard signal window size change

SIGINFO 29 discard signal status request from
keyboard

SIGUSR1 30 terminate process user-defined signal 1

SIGUSR2 31 terminate process user-defined signal 2

SIGTHR 32 discard signal thread AST

9.3 Sending Signals.

The kill function sends the specified signal to a pid. It takes two arguments: the first is the signal as
listed in the previous section. The second argument is the pid of a process or a group of processes.
This argument may be one of the signals specified in sigaction(2) or it may be 0, in which case
error checking is performed but no signal is actually sent. This can be used to check the validity of
pid. For a process to have permission to send a signal to a process designated by pid, the real or
effective user id of the receiving process must match that of the sending process or the user must
have appropriate privileges, such as given by a set-user-ID program or the user is the super-user.
A single exception is the signal SIGCONT, which may always be sent to any process with the same
session id as the caller.

• if pid is greater than zero: sig is sent to the process whose id is equal to pid;

• if pid is zero: sig is sent to all processes whose group id is equal to the process group id of
the sender, and for which the process has permission; this is a variant of killpg(3);

• if pid is -1: If the user has super-user privileges, the signal is sent to all processes excluding
system processes and the process sending the signal. If the user is not the super-user, the
signal is sent to all processes with the same uid as the user excluding the process sending the
signal. No error is returned if any process could be signaled;

• if pid is negative but not -1: sig is sent to all processes whose process group id is equal to
the absolute value of pid; this is a variant of killpg(3).

If the value of the first argument causes the signal to be sent to the calling process, either this
argument or at least one pending unblocked signal will be delivered before kill returns unless
the signal is blocked in the calling thread, the signal is unblocked in another thread, or another
thread is waiting for the signal in sigwait(). Setuid and setgid processes are dealt with slightly
differently. For the non-root user, to prevent attacks against such processes, some signal deliveries
are not permitted and return the error EPERM. The following signals are allowed through to this

5See setrlimit(2).
6See setitimer(2).
7See setitimer(2).

116 CHAPTER 9. PROCESSING SIGNALS.

class of processes: SIGKILL, SIGINT, SIGTERM, SIGSTOP, SIGTTIN, SIGTTOU, SIGTSTP, SIGHUP,
SIGUSR1, SIGUSR2. Upon successful completion, the value 0 is returned; otherwise the value -1 is
returned and the global variable errno is set to indicate the error.

9.4 Catching and Ignoring Signals.

Using the sigaction structure to configure signals and the sigaction to attach the handler function to
the signal event led us to the Listing 9.2 where two signals are configured: SIGUSR1 and SIGUSR2.

Listing 9.2: sigaction - shows how to intercept/ignore signals.
1 /* -*- mode: c-mode; -*- */
2
3 /* sigaction.c file. */
4 #include <stdio.h>
5 #include <stdlib.h>
6 #include <string.h>
7 #include <unistd.h>
8 #include <fcntl.h>
9 #include <errno.h>

10 #include <signal.h>
11
12 /* sigaction program. */
13
14 /* Functions prototypes. */
15 void handler(int);
16 int main(int , char *[]);
17
18 /* Global variables. */
19 struct sigaction sa = {
20 handler ,
21 SIGUSR1 ,
22 SA_SIGINFO
23 };
24
25 struct sigaction sb = {
26 SIG_IGN ,
27 SIGUSR2 ,
28 };
29
30 /* Main function. */
31 int main(int argc , char *argv [])
32 {
33 long int ret = EXIT_FAILURE;
34
35 /* Setup signal handler for this process. */
36 if(sigaction(SIGUSR1 , &sa, NULL) >= 0) {
37 if(sigaction(SIGUSR2 , &sb, NULL) >= 0) {
38 ret = EXIT_SUCCESS;
39 pause();
40 } else
41 perror("Could␣not␣setup␣SIGUSR2");
42 } else

9.4. CATCHING AND IGNORING SIGNALS. 117

43 perror("Could␣not␣setup␣SIGUSR1");
44 exit(ret);
45 }
46
47 void handler(int si)
48 {
49 /* Saving the current errno value. */
50 int save_errno = errno;
51
52 /* Handler code. */
53 printf("Entering␣handler .\n");
54
55 /* ... */
56 printf("Signal␣passed␣to␣handler:␣%d\n", si);
57 printf("Exiting␣handler .\n");
58
59 /* Restore the old errno value. */
60 errno = save_errno;
61 }
62
63 /* End of sigaction.c file. */

The first is intercepted and handled in the handler function. The second is ignored. Note the sa
and sb object of type struct sigaction: the first configuration for sa set to intercept the signal
SIGUSR1 and fill the int parameter passed to the handler with it. The reader should compile and
execute the program that will wait until a signal is sent to it. Using kill command, from a different
console, the user may try:

$ ps ax | grep sigaction
22948 p7 R+/1 0:00.00 grep sigaction
$ kill -s SIGUSR2 22948
$ ps ax | grep sigaction
22948 p7 R+/1 0:00.00 grep sigaction
$ kill -s SIGUSR1 22948
$ ps ax | grep sigaction
$

on the program console we can read these messages:

Entering handler.
Signal passed to handler: 30
Exiting handler.

9.4.1 Catching Signals.

A signal can be caught and handled by a user routine by supplying a pointer to that routine in
the sigaction call. The first time the signal is received, this routine will be called to process
that signal. When the routine, commonly called a signal handler, is executed, it will be passed a
single integer argument indicating which signal was received. This integer can be compared against
the constants in <signal.h>, enabling the programmer to write general-purpose signal handlers.
Listing 9.3 shows a small program that catches the interrupt signal and prints the string “OUCH”
when it is received:

118 CHAPTER 9. PROCESSING SIGNALS.

Listing 9.3: ouch1 - prints "OUCH" when an interrupt is received.

1 /* -*- mode: c-mode; -*- */
2
3 /* ouch1.c file. */
4 #include <stdio.h>
5 #include <stdlib.h>
6 #include <string.h>
7 #include <unistd.h>
8 #include <fcntl.h>
9 #include <errno.h>

10 #include <signal.h>
11
12 /* ouch1 program. */
13 #define FOREVER for (;;)
14
15 /* Functions prototypes. */
16 void handler(int);
17 int main(int , char *[]);
18 /* Global variables. */
19 struct sigaction sa = {
20 handler ,
21 SIGINT ,
22 SA_SIGINFO
23 };
24
25 /* Main function. */
26 int main(int argc , char *argv [])
27 {
28 long int ret = EXIT_FAILURE;
29
30 /* Setup signal handler for this process. */
31 if(sigaction(SIGINT , &sa, NULL) >= 0) {
32 ret = EXIT_SUCCESS;
33 FOREVER
34 pause();
35 } else
36 perror("Could␣not␣setup␣SIGINT");
37 exit(ret);
38 }
39
40 void handler(int si)
41 {
42 /* Handler code */
43 printf("OUCH\n");
44 }
45
46 /* End of ouch1.c file. */

This program differs from the sigaction.c one since the signal SIGINT has got the SA_RESETHAND
flag set. This will reset the SIGINT flag to default behaviour for the specified process after the
signal is captured for the first time. The second time the signal is sent to the process again, the
process will be interrupted.

9.5. USING SIGNALS FOR TIMEOUTS. 119

9.5 Using Signals for Timeouts.

By using the alarm system call, a program can generate timeouts while performing various functions.
For example, a program that wishes to read from a terminal, but give up after 30 seconds and take
a default action, would issue an alarm request for 30 seconds immediately before starting the read.
When 30 seconds elapsed, a SIGALARM signal would be sent to the process. Listing 9.4 shows a
program using alarm system call to produce a timeout.

Listing 9.4: alarm - perform alarm issuing for the executing process.

1 /* -*- mode: c-mode; -*- */
2
3 /* alarm.c file. */
4 #include <stdio.h>
5 #include <stdlib.h>
6 #include <string.h>
7 #include <unistd.h>
8 #include <fcntl.h>
9 #include <errno.h>

10 #include <signal.h>
11
12 #define FOREVER for (;;)
13
14 /* alarm program. */
15 /* Functions prototypes. */
16 void handler(int);
17 int main(int , char *[]);
18
19 /* Global variables. */
20 struct sigaction sa = {
21 handler ,
22 SIGALRM ,
23 SA_SIGINFO
24 };
25
26 /* The main function. */
27 int main(int argc , char *argv [])
28 {
29 long int ret = EXIT_FAILURE;
30
31 /* setup signal handler for this process. */
32 if(sigaction(SIGALRM , &sa, NULL) >= 0) {
33 alarm (15);
34 ret = EXIT_SUCCESS;
35 FOREVER {
36 printf("Waiting !\n");
37 sleep (5);
38 }
39 } else
40 perror("Could␣not␣setup␣SIGINT");
41 exit(ret);
42 }
43

120 CHAPTER 9. PROCESSING SIGNALS.

44 void handler(int si)
45 {
46 /* Handler code. */
47 if(si == SIGALRM)
48 printf("Alarm␣received .\n");
49 }
50
51 /* End of alarm.c file. */

9.5.1 The setjmp and longjmp Routines.

The setjmp function save its calling environment in its argument and it returns 0. The correspond-
ing longjmp function restore the environment saved by the most recent invocation of the respective
setjmp function. They then return so that program execution continues as if the corresponding
invocation of the setjmp call had just returned the value specified by its second argument, in-
stead of 0. The value specified by the second argument must be non-zero; a 0 value is treated
as 1 to allow the programmer to differentiate between a direct invocation of setjmp and a return
via longjmp. The longjmp routine may not be called after the routine which called the setjmp
routines returns. All accessible objects have values as of the time the longjmp routine was called,
except that the values of objects of automatic storage invocation duration that do not have the
volatile type and have been changed between the setjmp invocation and longjmp call are indeter-
minate. The setjmp/longjmp function pairs save and restore the signal mask. Listing 9.5 shows
a program using the setjmp/longjmp and alarm system call to produce a timeout.

Listing 9.5: timeout - program to demonstrate a timeout routine.
1 /* -*- mode: c-mode; -*- */
2
3 /* timeout.c file. */
4 #include <stdio.h>
5 #include <stdlib.h>
6 #include <string.h>
7 #include <unistd.h>
8 #include <fcntl.h>
9 #include <errno.h>

10 #include <signal.h>
11 #include <setjmp.h>
12
13 /* timeout.c program. */
14 #define FOREVER for (;;)
15
16 /* Functions prototypes. */
17 void timeout(int);
18 int main(int , char *[]);
19
20 /* Global variables. */
21 struct sigaction sa = {
22 timeout ,
23 SIGALRM ,
24 SA_SIGINFO | SA_RESETHAND
25 };
26 jmp_buf env;
27

9.5. USING SIGNALS FOR TIMEOUTS. 121

28 /* Main function. */
29 int main(int argc , char *argv [])
30 {
31 char buff[BUFSIZ];
32 long int ret = EXIT_FAILURE;
33
34 /* Setup signal handler for this process. */
35 if(sigaction(SIGALRM , &sa, NULL) >= 0) {
36
37 /*
38 * The code inside the if gets executed the first
39 * time through setjmp , the code inside the else
40 * the second time.
41 */
42 if(setjmp(env) == 0) {
43
44 /*
45 * Issue a request for an alarm to be
46 * delivered in 15 seconds.
47 */
48 alarm (15);
49
50 /* Prompt for input. */
51 printf("Type␣a␣word:␣if␣you␣don’t␣in␣15␣seconds␣I’ll␣use␣\"

WORD \":␣");
52 fgets(buff , BUFSIZ , stdin);
53
54 /* Turns off the alarm. */
55 alarm (0);
56 ret = EXIT_SUCCESS;
57 } else {
58 strncpy(buff , "WORD", BUFSIZ);
59 }
60 printf("\nThe␣word␣is␣%s\n", buff);
61 } else
62 perror("Could␣not␣setup␣SIGINT");
63 exit(ret);
64 }
65
66 /*
67 * timeout -- timeout function , executed when the alarm
68 * is issued.
69 */
70 void timeout(int sig)
71 {
72 /*
73 * Ignore the signal for the duration of this
74 * routine.
75 */
76 if(sig == SIGALRM) {
77
78 /* Restore the action of the alarm signal. */

122 CHAPTER 9. PROCESSING SIGNALS.

79 if(sigaction(SIGALRM , &sa, NULL) >= 0) {
80
81 /*
82 * We would perform any timeout -related
83 * functions here; in this case there
84 * are none.
85 */
86 ;
87
88 /*
89 * Return to the main routine at setjmp
90 * and make setjmp return 1.
91 */
92 ;
93 longjmp(env , 1);
94 }
95 }
96 }
97
98 /* End of timeout.c file. */

9.6 The OpenBSD Signal Mechanism.

9.6.1 The Signal Mask.

A user-defined signal handler is called with the signal mechanism provided by OpenBSD where
signals are manipulated using sigaddset, sigdelset, sigemptyset, sigfillset, sigismember,
sigpending, sigprocmask and sigsuspend system calls. These functions manipulate signal sets
stored in a sigset_t object. Either sigemptyset or sigfillset must be called for every object
of type sigset_t before any other use of the object. sigemptyset and sigfillset are provided
as macros, but actual functions are available if their names are undefined, with #undef name.

• sigemptyset function initializes a signal set to be empty;

• sigfillset initializes a signal set to contain all signals;

• sigaddset adds the specified signal as argument to the signal set;

• sigdelset deletes the specified signal as argument from the signal set;

• sigismember returns whether a specified signal as argument is contained in the signal set.

The sigismember function returns 1 if the signal is a member of the set and 0 otherwise. The
other functions return 0 upon success. A -1 return value indicates an error occurred and the global
variable errno is set to indicate the reason. The sigprocmask function examines and/or changes
the current signal mask, those signals that are blocked from delivery. Signals are blocked if they
are members of the current signal mask set. If the second argument is not NULL, the action of
sigprocmask depends on the value of the parameter specified as first argument, which can be one
of the following values:

SIG_BLOCK The new mask is the union of the current mask and the specified set.

SIG_UNBLOCK The new mask is the intersection of the current mask and the complement of the
specified set.

9.6. THE OPENBSD SIGNAL MECHANISM. 123

SIG_SETMASK The current mask is replaced by the specified set.

If the third argument is not NULL, it is set to the previous value of the signal mask. When the
second argument is NULL, the value of the first argument is insignificant and the mask remains
unchanged, providing a way to examine the signal mask without modification. The system quietly
disallows SIGKILL or SIGSTOP to be blocked. Only signals which are in the pending state will be
blocked. Signals that are explicitly ignored or for which no handler has been installed and where
the default action is to discard the signal are not held as pending and will be discarded regardless
of the signal mask. Blocked signals remain in the pending state until another call to sigprocmask
removes the pending signal(s) from the mask. If there are unblocked signals that are pending
after the signal mask is updated, at least one will be delivered before sigprocmask returns. Upon
successful completion, the value 0 is returned; otherwise the value -1 is returned and the global
variable errno is set to indicate the error. sigsuspend temporarily changes the blocked signal
mask to the set pointed by the first argument and then waits for a signal to arrive; on return the
previous set of masked signals is restored. The signal mask set is usually empty to indicate that all
signals are to be unblocked for the duration of the call. In normal usage, a signal is blocked using
sigprocmask(2) to begin a critical section, variables modified on the occurrence of the signal are
examined to determine that there is no work to be done, and the process pauses awaiting work by
using sigsuspend with the previous mask returned by sigprocmask(2). The sigsuspend function
always terminates by being interrupted, returning -1 with errno set to EINTR. Listing 9.6 shows a
program which blocks all signals but SIGUSR1.

Listing 9.6: sigblock - program to demonstrate the blocking of signal(s).
1 /* -*- mode: c-mode; -*- */
2
3 /* sigblock.c file. */
4 #include <stdio.h>
5 #include <stdlib.h>
6 #include <string.h>
7 #include <unistd.h>
8 #include <fcntl.h>
9 #include <errno.h>

10 #include <signal.h>
11 #include <setjmp.h>
12 #include <sys/signal.h>
13
14 /* sigblock program. */
15 #define FOREVER for (;;)
16
17 /* Functions prototypes. */
18 void handler(int , siginfo_t *, void *);
19 int main(int , char *[]);
20
21 /* Global variables. */
22 struct sigaction signals;
23 jmp_buf env;
24
25 /* Main function. */
26 int main(int argc , char *argv [])
27 {
28 long int ret = EXIT_FAILURE;
29
30 /* Setup signal set for this process. */

124 CHAPTER 9. PROCESSING SIGNALS.

31 signals.sa_sigaction = handler;
32 if(sigfillset (& signals.sa_mask) >= 0) {
33 if(sigdelset (& signals.sa_mask , SIGUSR1) >= 0) {
34 printf("Current␣signal␣mask␣set:␣0x%8x\n", signals.sa_mask)

;
35
36 /*
37 * Blocking all signals but SIGUSR1.
38 * Use # ‘kill -s SIGUSR1 pid ‘ to terminate the
39 * process.
40 */
41 if(sigprocmask(SIG_BLOCK , &signals.sa_mask , NULL) >= 0) {
42 if(setjmp(env) == 0) {
43 FOREVER {
44 ;
45 }
46 } else
47 ret = EXIT_SUCCESS;
48 }
49 }
50 }
51 exit(ret);
52 }
53
54 /*
55 * handler - the handler function execute when the configured
56 * signal is issued.
57 */
58 void handler(int sig , siginfo_t *mask , void *d)
59 {
60 longjmp(env , 1);
61 }
62
63 /* End of sigblock.c file. */

9.6.2 The Signal Stack.

It is possible for a program to specify an alternate stack on which signals should be processed.
This may be necessary if receipt of the signal can occur when the process stack is invalid. For
example, if a process runs out of stack space, it must be terminated: since there is no stack space
available, the stack cannot be extended to catch the signal. Using the alternate signal stack, the
process can take the signal on this stack, issue the appropriate requests to increse the stack size
limit and then return to normal operation on the regular stack. The alternate signal stack is defined
in <sys/signals.h> as follows:

Listing 9.7: The sigaltstack structure.

typedef struct sigaltstack {
void *ss_sp;
size_t ss_size;
int ss_flags;

} stack_t;

9.6. THE OPENBSD SIGNAL MECHANISM. 125

sigaltstack allows users to define an alternate stack on which signals delivered to this thread are
to be processed. If the first argument is non-zero and SS_DISABLE is set in ss_flags structure
member, the signal stack will be disabled. A disabled stack will cause all signals to be taken on
the regular user stack. Trying to disable an active stack will cause sigaltstack to return -1 with
errno set to EPERM. Otherwise, the ss_sp structure member specifies a pointer to a space to be
used as the signal stack and structure member named ss_size specifies the size of that space.
When a signal’s action indicates its handler should execute on the signal stack, specified with a
sigaction(2) system call, the system checks to see if the thread is currently executing on that stack.
If the thread is not currently executing on the signal stack, the system arranges a switch to the
signal stack for the duration of the signal handler’s execution. If the third argument is non-zero, the
current signal stack state is returned in the memory pointed by this argument. The ss_flags field
will contain the value SS_ONSTACK if the thread is currently on a signal stack and SS_DISABLE if the
signal stack is currently disabled. The value SIGSTKSZ is defined to be the number of bytes/chars
that would be used to cover the usual case when allocating an alternate stack area. The following
code fragment is typically used to allocate an alternate stack:

if((sigstk.ss_sp = malloc(SIGSTKSZ)) == NULL)
/* error return */

sigstk.ss_size = SIGSTKSZ;
sigstk.ss_flags = 0;
if(sigaltstack (&sigstk , NULL) == -1)

perror("sigaltstack");

An alternative approach is provided for programs with signal handlers that require a specific amount
of stack space other than the default size. The value MINSIGSTKSZ is defined to be the number of
bytes/chars that is required by the operating system to implement the alternate stack feature. In
computing an alternate stack size, programs should add MINSIGSTKSZ to their stack requirements to
allow for the operating system overhead. Signal stacks are automatically adjusted for the direction
of stack growth and alignment requirements. Signal stacks may or may not be protected by the
hardware and are not “grown” automatically as is done for the normal stack. If the stack overflows
and this space is not protected, unpredictable results may occur. On OpenBSD some additional
restrictions prevent dangerous address space modifications. The proposed space at ss_sp is verified
to be contiguously mapped for read-write permissions, no execute and incapable of syscall entry8.
If those conditions are met, a page-aligned inner region will be freshly mapped, all zero, with
MAP_STACK9, destroying the pre-existing data in the region. Once the sigaltstack is disabled,
the MAP_STACK attribute remains on the memory, so it is best to deallocate the memory via a
method that results in munmap(2). Upon successful completion, the value 0 is returned; otherwise
the value -1 is returned and the global variable errno is set to indicate the error. Listing 9.8 shows
a program using the alternate stack feature.

Listing 9.8: sigstack - program to demonstrate the signal stack features.
1 /* -*- mode: c-mode; -*- */
2
3 /* sigstack.c file. */
4 #include <stdio.h>
5 #include <stdlib.h>
6 #include <string.h>
7 #include <unistd.h>
8 #include <fcntl.h>
9 #include <errno.h>

10 #include <signal.h>

8See msyscall(2).
9See mmap(2).

126 CHAPTER 9. PROCESSING SIGNALS.

11 #include <setjmp.h>
12 #include <sys/resource.h>
13 #include <sys/signal.h>
14
15 /* sigstack program. */
16 #define STACKSIZE 10240
17 #define FOREVER for (;;)
18
19 /* Functions prototypes. */
20 void fn(void);
21 void handler(int , siginfo_t *, void *);
22 int main(int , char *[]);
23
24 /* Global variables. */
25 char *stack; /* pointer to signal stack base.

*/
26 int tooksig = 0; /* 1 after we take the signal. */
27 jmp_buf env;
28
29 /* Main function. */
30 int main(int argc , char *argv [])
31 {
32 long int ret = EXIT_FAILURE;
33 struct sigaction signals;
34 struct sigaltstack ss;
35 struct rlimit limits;
36
37 /* Set stack size limit to 50 kBytes. */
38 if(getrlimit(RLIMIT_STACK , &limits) >= 0) {
39 if(limits.rlim_cur > (50 * STACKSIZE)) {
40 limits.rlim_cur = 50 * STACKSIZE;
41 }
42 if(setrlimit(RLIMIT_STACK , &limits) >= 0) {
43
44 /*
45 * Take illegal instruction and process it with handler ,
46 * on the interrupt stack.
47 */
48 signals.sa_mask = 0;
49 signals.sa_sigaction = handler;
50 signals.sa_flags = SA_ONSTACK;
51 if(sigaction(SIGILL , &signals , NULL) >= 0) {
52
53 /*
54 * Allocate memory for the signal stack. The
55 * kernel assumes the addresses grow in the same
56 * direction as the process stack.
57 */
58 if((stack = (char *) malloc(sizeof(char *) * STACKSIZE))

!= NULL) {
59
60 /*

9.6. THE OPENBSD SIGNAL MECHANISM. 127

61 * Issue the call to tell the system about the
62 * signal stack. We pass the end of the signal
63 * stack , no the beginning , since the stack
64 * grows toward higher addresses.
65 */
66 ss.ss_size = STACKSIZE;
67 ss.ss_sp = (void *) stack;
68 if(sigaltstack (&ss , NULL) >= 0) {
69
70 /* Start using the stack. */
71 ret = EXIT_SUCCESS;
72 fn();
73 } else {
74 fprintf(stderr , "Cannot␣configure␣alternate␣signal␣

stack.\n");
75 }
76 } else {
77 fprintf(stderr , "Out␣of␣memory !\n");
78 }
79 } else {
80 fprintf(stderr , "Cannot␣configure␣SIGILL␣signal␣handling

.\n");
81 }
82 } else {
83 fprintf(stderr , "Could␣not␣set␣process␣current␣stack␣limit

.\n");
84 }
85 } else {
86 fprintf(stderr , "Could␣not␣get␣process␣current␣stack␣limit.\n

");
87 }
88 exit(ret);
89 }
90
91 /*
92 * handler - the handler function called when the signal
93 * is issued.
94 */
95 void handler(int sig , siginfo_t *mask , void *d)
96 {
97 struct rlimit limits;
98
99 /* Increase the stack limit to the maximum. */

100 if(getrlimit(RLIMIT_STACK , &limits) >= 0) {
101 limits.rlim_cur = limits.rlim_max;
102 if(setrlimit(RLIMIT_STACK , &limits) >= 0) {
103 tooksig = 1;
104 return;
105 } else
106 fprintf(stderr , "Could␣not␣set␣current␣stack␣limit .\n");
107 } else
108 fprintf(stderr , "Could␣not␣get␣current␣stack␣limit .\n");

128 CHAPTER 9. PROCESSING SIGNALS.

109 exit(EXIT_FAILURE);
110 }
111
112 /*
113 * fn - a generic recursive test function.
114 */
115 void fn(void)
116 {
117 /* Take up 5 kBytes of space on stack. */
118 printf("%s\n", tooksig ? "Now␣on␣extended␣stack." : "On␣50␣

kBytes␣stack.");
119
120 /* Recurse. */
121 fn();
122 }
123
124 /* End of sigstack.c file. */

Signals play an important role in OpenBSD programming and it is important to understand them.
This chapter has discussed several of the techniques and pitfalls associated with signal processing:
Chapter 10, Creating Pipes Directly., discuss several more signals associated with OpenBSD job
control.

Chapter 10

Executing Programs

The System Library Routine.
Executing Programs Directly.
Redirecting Input and Output.
Setting Up Pipelines.

One of the most powerful tools provided for the UNIX programmer on OpenBSD is the ability to
have one program execute another. For example, the command interpreter1 is a simple program
like any other, which executes programs for the user. It is possible for anyone to write a shell if the
user doesn’t like the ones provided and several people have. This chapter describes the methods
used to execute programs from within other programs.

10.1 The System Library Routine.

The simplest way to execute a program is by using the system library routine. This takes a
single argument, a character string containing the command to be executed. The system function
hands the argument string to the command interpreter sh(1). The calling process waits for the
shell to finish executing the command, ignoring SIGINT and SIGQUIT and blocking SIGCHLD. If
the argument string is NULL, system will return non-zero. Otherwise, it returns the termination
status of the shell in the format specified by waitpid(2). Note that fork handlers established using
pthread_atfork(3) are not called when a multithreaded program calls system. If a child process
cannot be created, or the termination status of the shell cannot be obtained, system returns -1
and sets errno to indicate the error. If execution of the shell fails, system returns the termination
status for a program that terminates with a call of exit(127). There are three major problems
with system: first, it is not versatile:

• commands may be executed, but the process executing them has no control over the subpro-
cess;

• a lot of overhead is required. Before executing the desired command, system executes a shell
process. Because the shell will immediately be executing something else, this is a waste of
processor time;

• system is a security hole. In order to prevent random system cracking, the security problems
presented by system will be not described here. Suffice to say that a set-user-id, particularly
to the super-user, program should never use system to execute its sub processes.

1Called the shell.

129

130 CHAPTER 10. EXECUTING PROGRAMS

10.2 Executing Programs Directly.

The alternative to using system is to create new processes and execute programs directly. There
are three distinct steps to executing programs: creating new processes, making them execute other
programs and waiting for them to terminate. In order to execute a program, it is first necessary
to create a new process for that program to run in. A running program creates a new process
by making a copy of itself. This copy is then immediately overlaid with the new program to be
executed.

10.2.1 Creating Processes.

The system call to create a new process is called fork. fork causes creation of a new process: this
is called child process which is an exact copy of the calling process, called parent process, except
for the following:

• the child process has a unique process id, which also does not match any existing process
group id;

• the child process has a different parent process id2;

• the child process has a single thread;

• the child process has its own copy of the parent’s descriptors. These descriptors reference the
same underlying objects, so that, for instance, file pointers in file objects are shared between
the child and the parent, so that an lseek(2) on a descriptor in the child process can affect
a subsequent read(2) or write(2) by the parent. This descriptor copying is also used by the
shell to establish standard input and output for newly created processes as well as to set up
pipes;

• the child process has no fcntl(2)-style file locks;

• the child process’ resource utilizations are set to 03;

• all interval timers are cleared4;

• the child process’ semaphore undo values are set to 05;

• the child process’ pending signals set is empty;

• the child process has no memory locks6;

In general, the child process should call _exit(2) rather than exit(3). Otherwise, any stdio buffers
that exist both in the parent and child will be flushed twice. Similarly, _exit(2) should be used to
prevent atexit(3) routines from being called twice7. Upon successful completion, fork returns a
value of 0 to the child process and returns the process id of the child process to the parent process.
Otherwise, a value of -1 is returned to the parent process, no child process is created, and the
global variable errno is set to indicate the error.

2I.e., the process id of the parent process.
3See getrusage(2).
4See setitimer(2).
5See semop(2).
6See mlock(2) and mlockall(2).
7Once in the parent and once in the child

10.2. EXECUTING PROGRAMS DIRECTLY. 131

10.2.2 Executing Programs.

The system call to execute programs is generically called exec. It exists in several forms described
below, but all forms of the call share certain properties. The exec family of functions shall replace
the current process image with a new process image. The new image shall be constructed from a
regular, executable file called the new process image file. There shall be no return from a successful
exec, because the calling process image is overlaid by the new process image. The fexecve function
shall be equivalent to the execve function except that the file to be executed is determined by the
file descriptor in the first argument instead of a pathname. The file offset of the first argument,
the file descriptor, is ignored. When a C-language program is executed as a result of a call to one
of the exec family of functions, it shall be entered as a C-language function call as follows:

int main (int argc , char *argv []);

where argc is the argument count and argv is an array of character pointers to the arguments
themselves. In addition, the following variable, which must be declared by the user if it is to be
used directly:

extern char ** environ;

is initialized as a pointer to an array of character pointers to the environment strings. The argv
and environ arrays are each terminated by a null pointer. The null pointer terminating the
argv array is not counted in argc. Applications can change the entire environment in a single
operation by assigning the environ variable to point to an array of character pointers to the new
environment strings. After assigning a new value to environ, applications should not rely on the
new environment strings remaining part of the environment, as a call to getenv, putenv, setenv,
unsetenv, or any function that is dependent on an environment variable may, on noticing that
environ has changed, copy the environment strings to a new array and assign environ to point to
it. Any application that directly modifies the pointers to which the environ variable points has
undefined behavior. Conforming multi-threaded applications shall not use the environ variable
to access or modify any environment variable while any other thread is concurrently modifying
any environment variable. A call to any function dependent on any environment variable shall be
considered a use of the environ variable to access that environment variable. The arguments
specified by a program with one of the exec functions shall be passed on to the new process
image in the corresponding main arguments. The first argument of the functions: execl, execle,
execlp, execv, execve and execvp represents a pointer to the pathname string that identifies
the new process image file. For the system calls: execlp and execvp the first argument is used to
construct a pathname that identifies the new process image file. If the file argument contains a ’/’
character, the file argument shall be used as the pathname for this file. Otherwise, the path prefix
for this file is obtained by a search of the directories passed as the environment variable PATH8.
If this environment variable is not present, the results of the search are implementation-defined.
There are two distinct ways in which the contents of the process image file may cause the execution
to fail, distinguished by the setting of errno to either ENOEXEC or EINVAL. In the cases where the
other members of the exec family of functions would fail and set errno to ENOEXEC, the execlp
and execvp functions shall execute a command interpreter and the environment of the executed
command shall be as if the process invoked the sh utility using execl as follows:

execl(<shell path >, arg0 , file , arg1 , ..., (char *) 0);

where <shell path> is an unspecified pathname for the sh utility, file is the process image
file, and for execvp, where arg0, arg1, and so on correspond to the values passed to execvp
in argv[0], argv[1], and so on. The arguments represented by arg0, ... are pointers to
null-terminated character strings. These strings shall constitute the argument list available to the
new process image. The list is terminated by a null pointer. The argument arg0 should point to

8See the Base Definitions volume of POSIX.1-2017, Chapter 8, Environment Variables.

132 CHAPTER 10. EXECUTING PROGRAMS

a filename string that is associated with the process being started by one of the exec functions.
The argument argv is an array of character pointers to null-terminated strings. The application
shall ensure that the last member of this array is a null pointer. These strings shall constitute
the argument list available to the new process image. The value in argv[0] should point to a
filename string that is associated with the process being started by one of the exec functions. In
the functions execle and fexecve the last argument is an array of character pointers to null-
terminated strings. These strings shall constitute the environment for the new process image. This
array is terminated by a null pointer. For those forms not containing an array for the environment:
execl, execv, execlp, and execvp, the environment for the new process image shall be taken
from the external variable environ in the calling process. The number of bytes available for the
new process’ combined argument and environment lists is {ARG_MAX}. It is implementation-defined
whether null terminators, pointers, and/or any alignment bytes are included in this total. File
descriptors open in the calling process image shall remain open in the new process image, except
for those whose close-on-exec flag FD_CLOEXEC is set. For those file descriptors that remain open,
all attributes of the open file description remain unchanged. For any file descriptor that is closed for
this reason, file locks are removed as a result of the close as described in close. Locks that are not
removed by closing of file descriptors remain unchanged. If file descriptor 0, 1, or 2 would otherwise
be closed after a successful call to one of the exec family of functions, implementations may open an
unspecified file for the file descriptor in the new process image. If a standard utility or a conforming
application is executed with file descriptor 0 not open for reading or with file descriptor 1 or 2 not
open for writing, the environment in which the utility or application is executed shall be deemed
non-conforming, and consequently the utility or application might not behave as described in this
standard. Directory streams open in the calling process image shall be closed in the new process
image. The state of the floating-point environment in the initial thread of the new process image
shall be set to the default. The state of conversion descriptors and message catalog descriptors in
the new process image is undefined. For the new process image, the equivalent of:

setlocale(LC_ALL , "C")

shall be executed at start-up. Signals set to the default action, SIG_DFL, in the calling process
image shall be set to the default action in the new process image. Except for SIGCHLD, signals set
to be ignored, SIG_IGN, by the calling process image shall be set to be ignored by the new process
image. Signals set to be caught by the calling process image shall be set to the default action in
the new process image9. If the SIGCHLD signal is set to be ignored by the calling process image,
it is unspecified whether the SIGCHLD signal is set to be ignored or to the default action in the
new process image. After a successful call to any of the exec functions, alternate signal stacks are
not preserved and the SA_ONSTACK flag shall be cleared for all signals. After a successful call to
any of the exec functions, any functions previously registered by the atexit or pthread_atfork
functions are no longer registered. If the ST_NOSUID bit is set for the file system containing the
new process image file, then the effective user id, effective group id, saved set-user-id, and saved
set-group-id are unchanged in the new process image. Otherwise, if the set-user-id mode bit of
the new process image file is set, the effective user id of the new process image shall be set to the
user id of the new process image file. Similarly, if the set-group-ID mode bit of the new process
image file is set, the effective group ID of the new process image shall be set to the group id of
the new process image file. The real user id, real group id, and supplementary group ids of the
new process image shall remain the same as those of the calling process image. The effective user
id and effective group id of the new process image shall be saved, as the saved set-user-id and
the saved set-group-id, for use by setuid. Any shared memory segments attached to the calling
process image shall not be attached to the new process image. Any named semaphores open in
the calling process shall be closed as if by appropriate calls to sem_close. Any blocks of typed
memory that were mapped in the calling process are unmapped, as if munmap was implicitly called

9See <signal.h>.

10.2. EXECUTING PROGRAMS DIRECTLY. 133

to unmap them. Memory locks established by the calling process via calls to mlockall or mlock
shall be removed. If locked pages in the address space of the calling process are also mapped into
the address spaces of other processes and are locked by those processes, the locks established by
the other processes shall be unaffected by the call by this process to the exec function. If the exec
function fails, the effect on memory locks is unspecified. Memory mappings created in the process
are unmapped before the address space is rebuilt for the new process image. When the calling
process image does not use the SCHED_FIFO, SCHED_RR, or SCHED_SPORADIC scheduling policies,
the scheduling policy and parameters of the new process image and the initial thread in that new
process image are implementation-defined. When the calling process image uses the SCHED_FIFO,
SCHED_RR, or SCHED_SPORADIC scheduling policies, the process policy and scheduling parameter
settings shall not be changed by a call to an exec function. The initial thread in the new process
image shall inherit the process scheduling policy and parameters. It shall have the default system
contention scope, but shall inherit its allocation domain from the calling process image. Per-process
timers created by the calling process shall be deleted before replacing the current process image
with the new process image. All open message queue descriptors in the calling process shall be
closed, as described in mq_close. Any outstanding asynchronous I/O operations may be canceled.
Those asynchronous I/O operations that are not canceled shall complete as if the exec function
had not yet occurred, but any associated signal notifications shall be suppressed. It is unspecified
whether the exec function itself blocks awaiting such I/O completion. In no event, however, shall
the new process image created by the exec function be affected by the presence of outstanding
asynchronous I/O operations at the time the exec function is called. Whether any I/O is canceled,
and which I/O may be canceled upon exec, is implementation-defined. The new process image
shall inherit the CPU-time clock of the calling process image. This inheritance means that the
process CPU-time clock of the process being exec-ed shall not be reinitialized or altered as a result
of the exec function other than to reflect the time spent by the process executing the exec function
itself. The initial value of the CPU-time clock of the initial thread of the new process image shall be
set to zero. If the calling process is being traced, the new process image shall continue to be traced
into the same trace stream as the original process image, but the new process image shall not inherit
the mapping of trace event names to trace event type identifiers that was defined by calls to the
posix_trace_eventid_open or the posix_trace_trid_eventid_open functions in the calling
process image. If the calling process is a trace controller process, any trace streams that were created
by the calling process shall be shut down as described in the posix_trace_shutdown function.
The thread id of the initial thread in the new process image is unspecified. The size and location
of the stack on which the initial thread in the new process image runs is unspecified. The initial
thread in the new process image shall have its cancellation type set to PTHREAD_CANCEL_DEFERRED
and its cancellation state set to PTHREAD_CANCEL_ENABLED. The initial thread in the new process
image shall have all thread-specific data values set to NULL and all thread-specific data keys shall be
removed by the call to exec without running destructors. The initial thread in the new process image
shall be joinable, as if created with the detachstate attribute set to PTHREAD_CREATE_JOINABLE.
The new process shall inherit at least the following attributes from the calling process image:

• nice value10;

• semadj values11;

• process id;

• parent process id;

• process group id;

• session membership;

10See nice.
11See semop.

134 CHAPTER 10. EXECUTING PROGRAMS

• real user id;

• real group id;

• supplementary group ids;

• time left until an alarm clock signal12;

• current working directory;

• root directory;

• file mode creation mask13;

• file size limit14

• process signal mask15;

• pending signal16;

• tms_utime, tms_stime, tms_cutime, and tms_cstime17;

• resource limits;

• controlling terminal;

• interval timers.

The initial thread of the new process shall inherit at least the following attributes from the calling
thread:

• signal mask18;

• pending signals19.

All other process attributes defined in this volume of POSIX.1-2017 shall be inherited in the new
process image from the old process image. All other thread attributes defined in this volume of
POSIX.1-2017 shall be inherited in the initial thread in the new process image from the calling
thread in the old process image. The inheritance of process or thread attributes not defined by this
volume of POSIX.1-2017 is implementation-defined. A call to any exec function from a process with
more than one thread shall result in all threads being terminated and the new executable image
being loaded and executed. No destructor functions or cleanup handlers shall be called. Upon
successful completion, the exec functions shall mark for update the last data access timestamp of
the file. If an exec function failed but was able to locate the process image file, whether the last
data access timestamp is marked for update is unspecified. Should the exec function succeed, the
process image file shall be considered to have been opened with open. The corresponding close
shall be considered to occur at a time after this open, but before process termination or successful
completion of a subsequent call to one of the exec functions, posix_spawn or posix_spawnp.
The argv[] and envp[] arrays of pointers and the strings to which those arrays point shall not be
modified by a call to one of the exec functions, except as a consequence of replacing the process
image. The saved resource limits in the new process image are set to be a copy of the process’

12See alarm.
13See umask.
14See getrlimit and setrlimit.
15See pthread_sigmask.
16See sigpending.
17See times.
18See sigprocmask and pthread_sigmask.
19See sigpending.

10.2. EXECUTING PROGRAMS DIRECTLY. 135

corresponding hard and soft limits. If one of the exec functions returns to the calling process
image, an error has occurred; the return value shall be -1, and errno shall be set to indicate the
error.

10.2.3 Waiting for Processes to Terminate.

After spawning a new process, the parent process is free to go about its business. The two processes
will be executing at the same time; neither will wait on the other. This is the way the shell starts up
a process in the background; it simply spawns a new process which executes the new program and
the parent prints another prompt to you. Unfortunately, the above is not always desirable. Often
the parent cannot continue until the program the child executes has completed its work. For this
reason, the wait system call is provided. The function takes one argument, a pointer to an int
which represent the status of the child process. wait suspends execution of its calling process until
status information is available for a terminated child process, or a signal is received. On return
from a successful wait call, the status area, if non-zero, is filled in with termination information
about the process that exited. The wait4() call provides a more general interface for programs that
need to wait for certain child processes, that need resource utilization statistics accumulated by
child processes, or that require options. The other wait functions are implemented using wait4().
In the waitpid and wait4 system calls the first argument, the wpid parameter, specifies the set
of child processes for which to wait. The following symbolic constants are currently defined in
<sys/wait.h>:

#define WAIT_ANY (-1) /* any process */
#define WAIT_MYPGRP 0 /* any process in my process group */

If the first argument is set to WAIT_ANY, the call waits for any child process. If it is set to
WAIT_MYPGRP, the call waits for any child process in the process group of the caller. If it is greater
than zero, the call waits for the process with process id equals to the first argument. Finally if is
less than -1, the call waits for any process whose process group id equals the absolute value of the
first argument. The status parameter is defined below. The options argument is the bitwise OR of
zero or more of the following values:

WCONTINUED Causes status to be reported for stopped child processes that have been continued
by receipt of a SIGCONT signal.

WNOHANG Indicates that the call should not block if there are no processes that wish to report
status.

WUNTRACED If set, children of the current process that are stopped due to a SIGTTIN, SIGTTOU,
SIGTSTP, or SIGSTOP signal also have their status reported.

in wait3 and wait4, if the last argument is non-zero, a summary of the resources used by the
terminated process and all its children is returned20. When the WNOHANG option is specified and no
processes wish to report status, wait4 returns a process id of 0. The waitpid call is identical to
wait4 with the last argument value of zero. The older wait3 call is the same as wait4 with a first
argument value of -1. The following macros may be used to test the manner of exit of the process.
One of the first three macros will evaluate to a non-zero (true) value:

WIFCONTINUED(status) True if the process has not terminated, and has continued after a job
control stop. This macro can be true only if the wait call specified the
WCONTINUED option.

WIFEXITED(status) True if the process terminated normally by a call to _exit(2) or exit(3).

20This information is currently not available for stopped processes.

136 CHAPTER 10. EXECUTING PROGRAMS

WIFSIGNALED(status) True if the process terminated due to receipt of a signal.

WIFSTOPPED(status) True if the process has not terminated, but has stopped and can be
restarted. This macro can be true only if the wait call specified the
WUNTRACED option or if the child process is being traced21.

Depending on the values of those macros, the following macros produce the remaining status
information about the child process:

WEXITSTATUS(status) If WIFEXITED(status) is true, evaluates to the low-order 8 bits of the
argument passed to _exit(2) or exit(3) by the child.

WTERMSIG(status) If WIFSIGNALED(status) is true, evaluates to the number of the signal
that caused the termination of the process.

WCOREDUMP(status) If WIFSIGNALED(status) is true, evaluates as true if the termination of
the process was accompanied by the creation of a core file containing an
image of the process when the signal was received.

WSTOPSIG(status) If WIFSTOPPED(status) is true, evaluates to the number of the signal
that caused the process to stop. If wait returns due to a stopped or
terminated child process, the process id of the child is returned to the
calling process. Otherwise, a value of -1 is returned and errno is set to
indicate the error.

If wait4, wait3 or waitpid returns due to a stopped or terminated child process, the process id
of the child is returned to the calling process. If there are no children not previously awaited, -1 is
returned with errno set to ECHILD. Otherwise, if WNOHANG is specified and there are no stopped
or exited children, 0 is returned. If an error is detected or a caught signal aborts the call, a value
of -1 is returned and errno is set to indicate the error.

Listing 10.1: ezshell - a simple shell program.
1 /* -*- mode: c-mode; -*- */
2
3 /* ezshell.c file. */
4 #include <stdio.h>
5 #include <stdlib.h>
6 #include <string.h>
7 #include <unistd.h>
8 #include <sys/wait.h>
9

10 /* Some general usage macros. */
11 #define FOREVER for (;;)
12 #define BUFFER_SIZE 1024
13 #define ARGS_SIZE 64
14
15 /* ezshell program. */
16 /* Functions prototypes. */
17 long int execute(char *[]);
18 void parse(char *, char *[]);
19 int main(int , char *[]);
20
21 /* Main function. */

21See ptrace(2).

10.2. EXECUTING PROGRAMS DIRECTLY. 137

22 int main(int argc , char *argv [])
23 {
24 char buff[BUFFER_SIZE];
25 char *args[ARGS_SIZE];
26 long int ret = EXIT_SUCCESS;
27
28 /* Main loop. */
29 do {
30
31 /* Prompt for read a command. */
32 printf("Command:␣");
33 if(fgets(buff , BUFFER_SIZE , stdin) != NULL) {
34
35 /* Split the string into arguments. */
36 parse(buff , args);
37 ret = execute(args);
38 } else {
39 printf("\n");
40 ret = EXIT_FAILURE;
41 }
42 } while(ret != EXIT_FAILURE);
43 exit(ret);
44 }
45
46 /*
47 * parse -- split the command in buff into
48 * individual arguments.
49 */
50 void parse(char *buff , char *args [])
51 {
52 while(*buff != ’\0’) {
53
54 /*
55 * Strip whitespace. Use nulls , so
56 * that the previous argument is tewrminated
57 * automatically.
58 */
59 while ((* buff == ’␣’) || (*buff == ’\t’) || (*buff == ’\n’))
60 *buff++ = ’\0’;
61
62 /* Save the argument. */
63 *args++ = buff;
64
65 /* Skip over the argument. */
66 while ((* buff != ’\0’) && (*buff != ’␣’) && (*buff != ’\t’) &&

(*buff != ’\n’))
67 buff ++;
68 }
69 *args = ’\0’;
70 }
71
72 /*

138 CHAPTER 10. EXECUTING PROGRAMS

73 * execute -- spawn a child process and execute
74 * the program.
75 */
76 long int execute(char *args [])
77 {
78 int pid , status;
79 long int ret = EXIT_FAILURE;
80
81 /* Get a child process. */
82 if((pid = fork()) >= 0) {
83 if(pid == 0) {
84 printf("Executing:␣%s␣with␣pid␣%d\n", *args , pid);
85 if(execvp (*args , args) < 0)
86 perror("execvp");
87 perror (*args);
88 ret = EXIT_FAILURE;
89 }
90
91 /* The parent executes the wait. */
92 while(wait(& status) != pid)
93
94 /* empty ... */
95 ;
96 ret = EXIT_SUCCESS;
97 } else
98 perror("fork");
99 return ret;

100 }
101
102 /* End of ezshell.c file. */

10.3 Redirecting Input and Output.

Listing 10.1 is useful, perhaps even as a very primitive shell. It reads a command name from the
standard input and then executes it. Unfortunately, there is no way to make the command read
from a file, nor write to one as the real shell does. Fortunately, this is relatively easy to do. Chapter
3, Moving Around in Files., described the dup system call, which could be used to obtain a new file
descriptor referring to the same file as its argument. Further, as mentioned above, files stay open
across calls to exec and child processes are identical in every way to their parents. This implies that
to make a process read and write files instead of the terminal, it is only necessary to open the files
and issue the appropriate calls to dup in the child process. Listing 10.2 shows a modified version
of the execute routine from Listing 10.1. This routine takes four arguments: the arguments to
the program and file descriptors referring to the files which should be used as the new program’s
standard input, standard output and standard error output. If no file is to be used, the caller of
execute can simply pass down 0, 1 or 2 respectively. The program must check, however that it
does not inadvertently close one of these descriptors, since the call to dup would the fail, in other
words, it is not possible to make dup return its argument.

Listing 10.2: The execute function.

/* Functions prototypes. */
long int execute(char *[], int , int , int);

10.3. REDIRECTING INPUT AND OUTPUT. 139

/*
* execute -- executes a command in a forked
* process.
*/

long int execute(cha *args[], int sin , int sout , int serr)
{

int pid , status;
long int ret = EXIT_FAILURE;

/* Get a child process. */
if((pid = fork()) >= 0) {

/* The child executes the code inside the if. */
if(pid == 0) {

/*
* For each of standard input , output ,
* and error output , set the child’s
* to the passed -down file descriptor.
* Note that we can’t just close 0, 1
* and 2 since we might need them.
*/

if(sin != 0) {
close (0);
dup(sin);

}
if(out != 1) {

close (1);
dup(sout);

}
if(serr != 2) {

close (2);
dup(serr);

}
if(execvp (*args , args) < 0)

perror("execvp");
else {

perror (*args);
ret = EXIT_FAILURE;

}
}

/* The parent executes the wait. */
while(wait(& status) != pid)

; /* empty loop ... */
ret = EXIT_SUCCESS;

} else
perror("fork");

return ret;
}

140 CHAPTER 10. EXECUTING PROGRAMS

10.4 Setting Up Pipelines.

One of the most powerful features of the UNIX operating system and OpenBSD is the ability to
construct a pipeline pf commands. This pipeline is set up such that the output of the first command
is sent to the input of the second, the output of the second command is sent to the input of the third
and so forth. This eliminates the need to run each command separately, saving the intermediate
results in temporary files.

10.4.1 The popen Library Routine.

One way to create a pipe is to use popen. The function “opens” a process by creating a pipe,
forking, and invoking the shell. Since a pipe is by definition unidirectional, the second argument
may specify only reading or writing, not both; the resulting stream is correspondingly read-only or
write-only. The first argument is a pointer to a NUL-terminated string containing a shell command
line. This string is passed to /bin/sh using the -c flag; interpretation, if any, is performed by the
shell. The second argument is a pointer to a NUL-terminated string which must be either "r"
or "re" for reading or "w" or "we" for writing. If the letter "e" is present in the string then the
close-on-exec flag shall be set on the file descriptor underlying the FILE that is returned. The return
value from popen is a normal standard I/O stream in all respects except that it must be closed
with pclose rather than fclose(3). Writing to such a stream writes to the standard input of the
command; the command’s standard output is the same as that of the process that called popen,
unless this is altered by the command itself. Conversely, reading from a “popened” stream reads the
command’s standard output, and the command’s standard input is the same as that of the process
that called popen. Note that popen output streams are fully buffered by default. In addition, fork
handlers established using pthread_atfork(3) are not called when a multithreaded program calls
popen. The pclose function waits for the associated process to terminate and returns the exit
status of the command as returned by wait4(2). The popen function returns NULL if the fork(2) or
pipe(2) calls fail, or if it cannot allocate memory. The pclose function returns -1 if stream is not
associated with a “popened” command, if stream already pclosed, or if wait4(2) returns an error.

10.4.2 Creating Pipes Directly.

The system call to create a pipe is called pipe. Which is an object allowing unidirectional data flow,
and allocates a pair of file descriptors. The first argument holds an array of two file descriptors: the
first connects to the read end of the pipe and the second connects to the write end, so that data
written to the second value in the array appears on, i.e., can be read from, the first entry. This
allows the output of one program to be sent to another program: the source’s standard output is
set up to be the write end of the pipe and the sink’s standard input is set up to be the read end
of the pipe. The pipe itself persists until all its associated descriptors are closed. A pipe whose
read or write end has been closed is considered widowed. Writing on such a pipe causes the writing
process to receive a SIGPIPE signal. Widowing a pipe is the only way to deliver end-of-file to a
reader: after the reader consumes any buffered data, reading a widowed pipe returns a zero count.
The pipe2 function is identical to pipe except that the non-blocking I/O mode on both ends of
the pipe is determined by the O_NONBLOCK flag in the flags argument and the close-on-exec flag on
both the new file descriptors is determined by the O_CLOEXEC flag in the second argument. Upon
successful completion, the value 0 is returned; otherwise the value -1 is returned and the global
variable errno is set to indicate the error. Listing 10.3 shows a program that opens a pipe to the
email program mutt and sends a message to the person executing it. The fdopen function takes a
low-level file descriptor and a mode as arguments and returns an stdio file pointer which refers to
the same file. This enables programs to use low-level I/O routines for a time and then convert to
high-level routines. Note that there is no real need for the parent to wait on the child process to
terminate. In fact, deleting the wait has the advantage of making the child run in the background

10.4. SETTING UP PIPELINES. 141

so that the user doesn’t have to wait for it to finish. The reader is invited to modify this program
to execute other programs and read from the pipe instead of writing or perhaps both.

Listing 10.3: mailer - open a pipe to the mutt command and send email.

1 /* -*- mode: c-mode; -*- */
2
3 /* mailer.c file. */
4 #include <stdio.h>
5 #include <stdlib.h>
6 #include <string.h>
7 #include <unistd.h>
8 #include <sys/wait.h>
9

10 /* Some general usage macros. */
11 #define FOREVER for (;;)
12 #define BUFFER_SIZE 1024
13 #define ARGS_SIZE 64
14
15 /* mailer program. */
16 /* Functions prototypes. */
17 char *getlogin(void);
18 int main(int , char *[]);
19
20 /* Main function. */
21 int main(int argc , char *argv [])
22 {
23 char *username;
24 int pid , pipefds[2];
25 long int ret = EXIT_SUCCESS;
26 FILE *fp;
27
28 /* Get user’s name. */
29 if((username = getlogin ()) != NULL) {
30
31 /*
32 * Create the pipe. This has to be done
33 * BEFORE the fork.
34 */
35 if(pipe(pipefds) >= 0) {
36 if((pid = fork()) >= 0) {
37
38 /*
39 * The child process executes the stuff inside
40 * the if.
41 */
42 if(pid == 0) {
43
44 /*
45 * Make the read side of the pipe our
46 * standard input.
47 */
48 close(STDIN_FILENO);

142 CHAPTER 10. EXECUTING PROGRAMS

49 dup(pipefds[0]);
50 close(pipefds[0]);
51
52 /*
53 * Close the write side of the pipe;
54 * we’ll let our output go to the screen.
55 */
56 close(pipefds[1]);
57
58 /* Execute the command "mutt username ". */
59 if(execl("/usr/local/bin/mutt", "-s␣\" ERROR␣Messages \""

, "myemail@gmail.com", "-a␣logFile.log", NULL) >=
0) {

60 ;
61 } else
62 perror("execl");
63 } else {
64
65 /* The parent executes this code. */
66 /*
67 * Close the read side of the pipe; we
68 * don’t need it and the child is not
69 * writing on the pipe anyway.
70 */
71 close(pipefds[0]);
72
73 /* Convert the write side of the pipe to stdio. */
74 if((fp = fdopen(pipefds[1], "w")) != NULL) {
75
76 /* send a message. close the pipe. */
77 fprintf(fp, "Errors␣from␣your␣porgram .\n");
78 fclose(fp);
79 ret = EXIT_SUCCESS;
80 while(wait(NULL) != pid)
81 ;
82 } else {
83 perror("fdopen");
84 }
85 }
86 } else {
87 perror("fork");
88 }
89 } else
90 perror("pipe");
91 } else
92 fprintf(stderr , "Who␣are␣you?\n");
93 exit(ret);
94 }
95
96 /* End of mailer.c file. */

Chapter 11

Job Control

Preliminary Concepts.
Job Control in the Shell.
Job Control Outside the Shell.
Important Points.

Each job is a process group and a process is a program in execution1. The job control mechanism
provided in OpenBSD system enables a user to control many processes at once. Coupled with the
commands provided by the Korn shell, called ksh and the tty driver, the job control mechanism
enables the user to:

• suspend an executing job;

• place that job in the background;

• continue the job’s execution;

• return the job to the foreground;

• cause a background job to be stopped when it attempts output to the terminal;

• cause a background job to stop when it tries to read from the terminal.

The chapter describes how the various tasks mentioned above can be performed by user programs.
In order to provide a familiar framework on which to base our discussion, we will describe things
in terms of ksh commands. The Korn shell, or ksh, was invented by David Korn of AT&T Bell
Laboratories in the mid-1980s. It is almost entirely upwardly compatible with the Bourne shell,
which means that Bourne shell users can use it right away, and all system utilities that use the
Bourne shell can use the Korn shell instead. It began its public life in 1986 as part of AT&T’s
“Experimental Toolchest”, meaning that its source code was available at very low cost to anyone
who was willing to use it without technical support and with the knowledge that it might still have
a few bugs. Eventually, AT&T’s UNIX System Laboratories (USL) decided to give it full support
as a UNIX utility. As of USL’s version of UNIX called System V Release 4, SVR4 for short (1989),
it was distributed with all USL UNIX systems, all third-party versions of UNIX derived from SVR4,
and many other versions. The OpenBSD ksh is based on the public domain 7th edition Bourne
shell clone by Charles Forsyth and parts of the BRL shell by Doug A. Gwyn, Doug Kingston, Ron
Natalie, Arnold Robbins, Lou Salkind and others. The first release of pdksh was created by Eric
Gisin, and it was subsequently maintained by John R. MacMillan, Simon J. Gerraty and Michael
Rendell.

1See [2].

143

144 CHAPTER 11. JOB CONTROL

11.1 Preliminary Concepts.

11.1.1 The Controlling Terminal.

When a terminal file, e.g. /dev/tty12, is opened, it causes the opening process to wait until a
connection is established. In practice, user programs rarely open these file directly; they are opened
by the init process and become a user’s standard input and output files. The first terminal file open
in a process becomes the controlling terminal for that process. The controlling terminal is inherited
by a child process during a fork, even if the controlling terminal is closed. The file /dev/tty is, in
each process, a synonym fo the controlling terminal associated with that process. It is useful for
programs that wish to be sure of writing messages on the terminal no matter how output has been
redirected. Certain processes in the system, usually the daemons started at system boot time, clear
their controlling terminal using the ioctl system call, with TIOCNOTTY as the operation constant.
The reason for this will become clear later.

11.1.2 Process Groups.

On OpenBSD systems, it is possible to place processes into any arbitrary process group using
the setpgid system call. The Korn shell uses this call in a straight-forward way; each shell job
constitutes a single process group. Each time it starts a process, ksh sets that process’s group to
the same number as its process id. The process group id is set in both parent and child to deal
with race condition. The process group of the current process is returned by getpgrp. The process
group of the pid process is returned by getpgid. If the first argument of getpid is zero, the
function returns the process group of the current process. Process groups are used for distribution
of signals and by terminals to arbitrate requests for their input: processes that have the same
process group as the terminal are foreground and may read, while others will block with a signal
if they attempt to read. These calls are thus used by programs such as csh(1) to create process
groups in implementing job control. The tcgetpgrp and tcsetpgrp calls are used to get/set the
process group of the controlling terminal. The process group associated with a terminal may be
obtained using the call:

ioctl(fd , TIOCGPGRP , &pgrp)

where pgrp is an integer and fd refers to the terminal in question. The terminal’s process group
may be changed using the ioctl system call with TIOCGPGRP as the operation constant.

11.1.3 System Calls.

In order to write subroutines that mimic those of ksh, it is necessary to first describe a few of the
system calls we will be using. Several of them have been described in detail in previous chapters
and we will only mention them briefly here to describe what we plan to use them for.

ioctl will be used to initially set the process group of the controlling terminal to the
process group of the shell. This is necessary to allow the shell to print prompts,
read from the terminal and accept signals. We will also use ioctl to change
the process group of the terminal to permit a job in another process group to
access it, thus putting the job in the foreground.

setpgid sets the process group of the specified process pid to the specified value in the
second argument. If the first argument is zero, then the call applies to the
current process. If the second argument is zero, the process id of the specified
process is used.

11.1. PRELIMINARY CONCEPTS. 145

killpg sends the signal in the second argument to the process group specified by the
first argument2. If the first argument is 0, killpg sends the signal to the
sending process’s group. The sending process and members of the process
group must have the same effective user id or the sender must be the super-
user. As a single special case the continue signal SIGCONT may be sent to any
process with the same session id as the caller.

wait4 This call is a much more sophisticated version of the wait system call. it
is called as:pid_t wait4(pid_t wpid, int *status, int options, struct rusage
*rusage);where wpid parameter specifies the set of child processes for which to
wait. The following symbolic constants are currently defined in <sys/wait.h>:

#define WAIT_ANY (-1) /* any process */
#define WAIT_MYPGRP 0 /* any process in my process

group */

If wpid is set to WAIT_ANY, the call waits for any child process. If wpid is
set to WAIT_MYPGRP, the call waits for any child process in the process group
of the caller. If wpid is greater than zero, the call waits for the process with
process id wpid. If wpid is less than -1, the call waits for any process whose
process group id equals the absolute value of wpid. status is a pointer to
type union wait; options is an integer containing a bit mask described below
and rusage is an optional pointer of type struct rusage. If non-zero, it will
be filled in with resource usage statistics about the child process. The union
and the options flags are defined in the include file <sys/wait.h>; the other
structure is defined in the include file <sys/resource.h>. As with wait, the
process id of the process whose status is being given is returned and -1 is
returned when there are no processes that wish to report their status. The
flags can be ORed into options:

WCONTINUED Causes status to be reported for stopped child processes that
have been continued by receipt of a SIGCONT signal.

WHOHANG this flag specifies that the call should not block if there are
no processes which wish to report their status. This enables a
process to check for any processes whose status has changed
and then go on to something else if there are none;

WUNTRACED if set, children of the current process that are stopped due to
a SIGTTIN, SIGTTOU, SIGTSTP or SIGSTOP signal also have
their status reported.

There are also four macros defined; each takes a single argument:

WIFCONTINUED(status) True if the process has not terminated, and has
continued after a job control stop. This macro can
be true only if the wait call specified the WCONTINUED
option.

WIFEXITED(status) True if the process terminated normally by a call
to _exit(2) or exit(3).

WIFSIGNALED(status) True if the process terminated due to receipt of a
signal.

2See sigaction(2) for a list of signals.

146 CHAPTER 11. JOB CONTROL

WIFSTOPPED(status) True if the process has not terminated, but has
stopped and can be restarted. This macro can be
true only if the wait call specified the WUNTRACED
option or if the child process is being traced3.

Depending on the values of those macros, the following macros produce the
remaining status information about the child process:

WEXITSTATUS(status) if WIFEXITED(status) is true, evaluates to the
low-order 8 bits of the argument passed to _exit(2)
or exit(3) by the child.

WTERMSIG(status) If WIFSIGNALED(status) is true, evaluates to the
number of the signal that caused the termination
of the process.

WCOREDUMP(status) If WIFSIGNALED(status) is true, evaluates as true
if the termination of the process was accompanied
by the creation of a core file containing an image
of the process when the signal was received.

WSTOPSIG(status) If WIFSTOPPED(status) is true, evaluates to the
number of the signal that caused the process to
stop.

11.1.4 The job and process Data Types.

In the include file <sys/proc.h> the struct pgrp is defined:

Listing 11.1: The pgrp structure.

struct pgrp {
LIST_ENTRY(pgrp) pg_hash;
LIST_HEAD(, process) pg_members;
struct session *pg_session;
struct sigiolst pg_sigiolst;
pid_t pg_id;
int pg_jobc;

};

The structure members are:

pg_hash hash chain;

pg_members pointer to pgrp members;

pg_session pointer to session;

pg_sigiolst list of sigio structures;

pg_id pgrp id;

pj_jobc procs qualifying pgrp for job control.

and the struct process is defined as follow:

3See ptrace(2).

11.1. PRELIMINARY CONCEPTS. 147

Listing 11.2: The process structure.

struct process {
struct proc *ps_mainproc;
struct ucred *ps_ucred;
LIST_ENTRY(process) ps_list;
TAILQ_HEAD(,proc) ps_threads;
LIST_ENTRY(process) ps_pglist;
struct process *ps_pptr;
LIST_ENTRY(process) ps_sibling;
LIST_HEAD(, process) ps_children;
LIST_ENTRY(process) ps_hash;
LIST_ENTRY(process) ps_orphan;
LIST_HEAD(, process) ps_orphans;
struct sigiolst ps_sigiolst;
struct sigacts *ps_sigacts;
struct vnode *ps_textvp;
struct filedesc *ps_fd;
struct vmspace *ps_vmspace;
pid_t ps_pid;
struct futex_list ps_ftlist;
struct tslpqueue ps_tslpqueue;
struct rwlock ps_lock;
struct mutex ps_mtx;
struct klist ps_klist;
u_int ps_flags;
int ps_siglist;
struct proc *ps_single;
u_int ps_singlecount;
int ps_traceflag;
struct vnode *ps_tracevp;
struct ucred *ps_tracecred;
u_int ps_xexit;
int ps_xsig;
pid_t ps_ppid;
pid_t ps_oppid;
int ps_ptmask;
struct ptrace_state *ps_ptstat;
struct rusage *ps_ru;
struct tusage ps_tu;
struct rusage ps_cru;
struct itimerspec ps_timer[3];
struct timeout ps_rucheck_to;
time_t ps_nextxcpu;
u_int64_t ps_wxcounter;
struct unveil *ps_uvpaths;
ssize_t ps_uvvcount;
size_t ps_uvncount;
int ps_uvdone;
struct plimit *ps_limit;
struct pgrp *ps_pgrp;
char ps_comm[_MAXCOMLEN];
vaddr_t ps_strings;

148 CHAPTER 11. JOB CONTROL

vaddr_t ps_auxinfo;
vaddr_t ps_timekeep;
vaddr_t ps_sigcode;
vaddr_t ps_sigcoderet;
u_long ps_sigcookie;
u_int ps_rtableid;
char ps_nice;
struct uprof {

caddr_t pr_base;
size_t pr_size;
u_long pr_off;
u_int pr_scale;

} ps_prof;
u_int32_t ps_acflag;
uint64_t ps_pledge;
uint64_t ps_execpledge;
int64_t ps_kbind_cookie;
u_long ps_kbind_addr;
struct pinsyscall ps_pin;
struct pinsyscall ps_libcpin;
u_int ps_threadcnt;
struct timespec ps_start;
struct timeout ps_realit_to;

};

#define ps_startzero ps_klist
#define ps_endzero ps_startcopy
#define ps_startcopy ps_limit
#define BOGO_PC (u_long) -1
#define ps_endcopy ps_threadcnt

ps_mainproc is the original thread in the process. It’s only still special for the handling
of some signal and ptrace behaviors that need to be fixed;

ps_ucred process owner’s identity;

ps_list list of all processes;

ps_threads [K | S] threads in this process;

ps_pglist list of processes in pgrp;

ps_pptr pointer to parent process;

ps_sibling list of sibling processes;

ps_children pointer to list of children;

ps_hash hash chain;

ps_orphan list of orphan processes. An orphan is the child that has been re-parented
to the debugger as a result of attaching to it. Need to keep track of them
for parent to be able to collect the exit status of what used to be children;

ps_orphans pointer to list of orphans;

11.1. PRELIMINARY CONCEPTS. 149

ps_sigiolst list of sigio structures;

ps_sigacts [I] signal actions, state;

ps_textvp vnode of executable;

ps_fd pointer to open files structure;

ps_vmspace address space;

ps_pid process identifier;

ps_ftlist futexes attached to this process;

ps_tslpqueue [p] queue of threads in thrsleep;

ps_lock per-process rwlock;

ps_mtx per-process mutex;

The following fields are all zeroed upon creation in process_new:

ps_klist knotes attached to this process;

ps_flags [a] PS_* flags;

ps_siglist signals pending for the process;

ps_single [S] thread for single-threading;

ps_singlecount [a] not yet suspended threads;

ps_traceflag kernel trace points;

ps_tracevp trace to vnode;

ps_tracecred creds for writing trace;

ps_xexit exit status for wait;

ps_xsig stopping or killing signal;

ps_ppid [a] cached parent pid;

ps_oppid [a] save parent pid during ptrace;

ps_ptmask ptrace event mask;

ps_ptstat ptrace state;

ps_ru sum of stats for dead threads;

ps_tu accumulated times;

ps_cru sum of stats for reaped children;

ps_timers [m] ITIMER_REAL timer;

ps_rucheck_to [] resource limit check timer;

ps_nextxcpu when to send next SIGXCPU in seconds of process runtime;

ps_wxcounter —;

150 CHAPTER 11. JOB CONTROL

ps_uvpaths unveil vnodes and names;

ps_uvvcount count of unveil vnodes held;

ps_uvncount count of unveil names allocated;

ps_uvdone no more unveil is permitted;

The following fields are all copied upon creation in process_new:

ps_limit [m, R] process limits;

ps_pgrp pointer to process group;

ps_comm command name, incl NUL;

ps_strings user pointers to argv/env;

ps_auxinfo user pointer to auxinfo;

ps_timekeep user pointer to timekeep;

ps_sigcode [I] user pointer to signal code;

ps_sigcoderet [I] user ptr to sigreturn retPC;

ps_sigcookie [I]

ps_rtableid [a] process routing table/domain;

ps_nice process nice value;

ps_prof are the profile argument organized in a struct:

• pr_base — buffer base;

• pr_size — buffer size;

• pr_off — pc offset;

• pr_scale — pc scaling.

ps_acflag accounting flags;

ps_pledge [m] pledge promises;

ps_execpledge [m] execpledge promises;

ps_kbind_cookie [m];

ps_kbind_addr [m];

ps_pin static or ld.so;

ps_libcpin libc.so, from pinsyscalls(2);

ps_threadcnt number of threads;

ps_start starting uptime;

ps_realit_to [m] ITIMER_REAL timeout;

In the same file we also have the struct proc:

11.1. PRELIMINARY CONCEPTS. 151

Listing 11.3: The proc structure.

struct proc {
TAILQ_ENTRY(proc) p_runq;
LIST_ENTRY(proc) p_list;
struct process *p_p;
TAILQ_ENTRY(proc) p_thr_link;
TAILQ_ENTRY(proc) p_fut_link;
struct futex *p_futex;
struct filedesc *p_fd;
struct vmspace *p_vmspace;
struct p_inentry p_spinentry;
struct p_inentry p_pcinentry;
int p_flag;
u_char p_spare;
char p_stat;
u_char p_runpri;
u_char p_descfd;
pid_t p_tid;
LIST_ENTRY(proc) p_hash;
int p_dupfd;
int p_cpticks;
const volatile void *p_wchan;
struct timeout p_sleep_to;
const char *p_wmesg;
fixpt_t p_pctcpu;
u_int p_slptime;
u_int p_uticks;
u_int p_sticks;
u_int p_iticks;
struct cpu_info *volatile p_cpu;
struct rusage p_ru;
struct tusage p_tu;
struct plimit *p_limit;
struct kcov_dev *p_kd;
struct lock_list_entry *p_sleeplocks;
struct kqueue *p_kq;
int p_siglist;
sigset_t p_sigmask;
char p_name[_MAXCOMLEN];
u_char p_slppri;
u_char p_usrpri;
u_int p_estcpu;
int p_pledge_syscall;
struct ucred *p_ucred;
struct sigaltstack p_sigstk;
u_long p_prof_addr;
u_long p_prof_ticks;
struct user *p_addr;
struct mdproc p_md;
sigset_t p_oldmask;
int p_sisig;
union sigval p_sigval;

152 CHAPTER 11. JOB CONTROL

long p_sitrapno;
int p_sicode;

};

The meanings of the members of this structure are:

p_runq [S] current run/sleep queue;

p_list list of all threads;

p_p [I] the process of this thread;

p_thr_link threads in a process linkage;

p_fut_link threads in a futex linkage;

p_futex current sleeping futex;

p_fd copy of p_p -> ps_fd;

p_vmspace [I] copy of p_p -> ps_vmspace;

p_spinentry [o] cache for SP check;

p_pcinentry [o] cache for PC check;

p_flag P_* flags;

p_spare unused;

p_stat [S] S* process status;

p_runpri [S] runqueue priority;

p_descfd if not 255, fdesc permits this fd;

p_tid thread identifier;

p_hash hash chain;

p_dupfd sideways return value from filedescopen. XXX;

p_cpticks ticks of cpu time;

p_wchan [S] sleep address;

p_sleep_to timeout for tsleep;

p_wmesg [S] reason for sleep;

p_pctcpu [S] %cpu for this thread;

p_slptime [S] time since last blocked;

p_uticks statclock hits in user mode;

p_sticks statclock hits in system mode;

p_iticks statclock hits processing intr;

p_cpu [S] CPU we’re running on;

p_ru statistics;

11.1. PRELIMINARY CONCEPTS. 153

p_tu accumulated times;

p_limit [l] read ref. of p_p -> ps_limit;

p_kd kcov device handle;

p_sleeplocks WITNESS lock tracking;

p_kq [o] select/poll queue of evts;

p_siglist [a] signals arrived and not delivered;

p_sigmask [a] current signal mask;

p_name thread name, incl NUL;

p_slppri [S] sleeping priority;

p_usrpri [S] priority based on p_estcpu and ps_nice;

p_estcpu [S] time averaged val of p_cpticks;

p_pledge_syscall cache of current syscall;

p_ucred [o] cached credentials;

p_sigstk sp and on stack state variable;

p_prof_addr temporary storage for profiling address until AST;

p_prof_ticks temporary storage for profiling ticks until AST;

p_addr kernel virtual addr of u-area;

p_md any machine-dependent fields;

p_oldmask saved mask from before sigpause;

p_sisig for core dump/debugger;

p_sigval for core dump/debugger;

p_sitrapno for core dump/debugger;

p_sicode for core dump/debugger.

11.1.5 Using kernel to retrieve processes informations.

The sysctl system call is used to retrieve kernel informations about various topics. We can use it
to find the processes running on the system. In the listing 11.4 is showed a program to get the list
of processes:

Listing 11.4: getprocs - retrieve informations on processes.
1 /* -*- mode: c-mode; -*- */
2
3 /* getprocs.c file. */
4 #include <stdio.h>
5 #include <stdlib.h>
6 #include <string.h>
7 #include <errno.h>

154 CHAPTER 11. JOB CONTROL

8 #include <sys/sysctl.h>
9

10 /* getprocs program. */
11 #define TRUE 1
12 #define FALSE 0
13
14 /* Functions prototypes. */
15 struct kinfo_proc *getprocs(int *, int);
16 long int showinfo(int);
17 int main(int , char *[]);
18
19 /* Main function. */
20 int main(int argc , char * argv [])
21 {
22 long int ret = EXIT_FAILURE;
23
24 /* Check arguments. */
25 if(argc == 1) {
26 exit(showinfo(FALSE));
27 } else if((argc == 2) && \
28 (! strncmp(argv[1], "-t", 3) || !strncmp(argv[1], "--

threads", 10))) {
29 exit(showinfo(TRUE));
30 } else {
31 printf("Usage:\n") ;
32 printf("␣␣␣␣␣␣list␣[-h]␣[-t]\n\n") ;
33 printf("Options :\n") ;
34 printf("␣␣␣␣␣␣-h,␣--help␣␣␣␣␣␣␣␣␣␣␣␣Print␣this␣information\n

") ;
35 printf("␣␣␣␣␣␣-t,␣--threads␣␣␣␣␣␣␣␣␣Show␣threads\n\n") ;
36 ret = EXIT_SUCCESS;
37 }
38 exit(ret);
39 }
40
41 /*
42 * getprocs -- retrieve the list of processes.
43 */
44 struct kinfo_proc *getprocs(int *count , int threads)
45 {
46 struct kinfo_proc *procbase = NULL ;
47 unsigned int maxslp ;
48 size_t size = sizeof(maxslp) ;
49 int maxslp_mib [] = {
50 CTL_VM ,
51 VM_MAXSLP
52 };
53 int mib[6] = {
54 CTL_KERN ,
55 KERN_PROC ,
56 threads ? KERN_PROC_KTHREAD | KERN_PROC_SHOW_THREADS :

KERN_PROC_KTHREAD ,

11.1. PRELIMINARY CONCEPTS. 155

57 0,
58 sizeof(struct kinfo_proc),
59 0
60 };
61 if(sysctl(maxslp_mib , 2, &maxslp , &size , NULL , 0) == -1) {
62 perror("list");
63 return NULL;
64 }
65
66 retry:
67 if(sysctl(mib , 6, NULL , &size , NULL , 0) == -1) {
68 perror("list") ;
69 return NULL;
70 }
71 size = 5 * size / 4; /* extra slop */
72 procbase = (struct kinfo_proc *) malloc(size);
73 if(procbase == NULL) {
74 perror("list") ;
75 return NULL;
76 }
77 mib[5] = (int) (size / sizeof(struct kinfo_proc));
78 if(sysctl(mib , 6, procbase , &size , NULL , 0)) {
79 if(errno == ENOMEM) {
80 free(procbase);
81 goto retry;
82 }
83 perror("list") ;
84 return NULL;
85 }
86 *count = (int) (size / sizeof(struct kinfo_proc));
87 return procbase;
88 }
89
90 /*
91 * showinfo -- show informations about threads.
92 */
93 long int showinfo(int threads)
94 {
95 struct kinfo_proc *list , *proc;
96 int count , i ;
97
98 /* */
99 if((list = getprocs (&count , threads)) == NULL) {

100 return EXIT_FAILURE;
101 }
102 proc = list ;
103 if(threads) {
104 for(i = 0; i < count; ++i, ++proc) {
105 if(proc -> p_tid != -1) {
106 printf("%s:␣pid:␣%d␣(tid:␣%d)\n", proc -> p_comm , proc ->

p_pid , proc -> p_tid);
107 }

156 CHAPTER 11. JOB CONTROL

108 }
109 } else {
110 for(i = 0; i < count; ++i, ++proc) {
111 printf("%s:␣pid:␣%d\n", proc -> p_comm , proc ->p_pid) ;
112 }
113 }
114 return EXIT_SUCCESS;
115 }
116
117 /* End of getprocs.c file. */

11.2 Job Control in the Shell.

This section describes the various parts of job control that are handled primarily by the shell.
This includes moving processes from foreground to background and back, suspending process in
mid-execution and so on.

11.2.1 Setting Up for Job Control.

In order to perform job control, it is necessary to set up the environment. This set-up is done by
the shell when it is first invoked and includes setting the shell’s process group and then setting the
terminal’s process group. Listing 11.5 shows how this might be done.

Listing 11.5: setupjc - setup for job control.
1 /* -*- mode: c-mode; -*- */
2
3 /* setupjc.c file. */
4 #include <stdio.h>
5 #include <stdlib.h>
6 #include <string.h>
7 #include <unistd.h>
8 #include <sys/wait.h>
9

10 /* Some general usage macros. */
11 #define FOREVER for (;;)
12 #define BUFFER_SIZE 1024
13 #define ARGS_SIZE 64
14
15 /* Global variables. */
16 int npid;
17 int npgrp;
18 int ntermpgrp;
19
20 /* Functions prototypes. */
21 void setup(void);
22
23 /* setup function. */
24 void setup(void)
25 {
26 /* Obtain shell’s process id. */
27 npid = getpid ();
28

11.2. JOB CONTROL IN THE SHELL. 157

29 /*
30 * Just use pid for process group. This is
31 * not a requirement , just convenient. Other
32 * ways of picking a process group can be used.
33 */
34 npgrp = npid;
35 ntermpgrp = npid;
36
37 /* Set the shell’s process group. */
38 if(setpgid(npid , npgrp) >= 0) {
39 if(ioctl(1, TIOCSPGRP , &npgrp) >= 0) {
40 ;
41 } else {
42 perror("ioctl");
43 exit(EXIT_FAILURE);
44 }
45 } else {
46 perror("getpgid");
47 exit(EXIT_FAILURE);
48 }
49 }
50
51 /* End of setupjc.c file. */

11.2.2 Executing a Program.

When executing a program, the shell performs something similar to what is done in Listing 10.2.
The actual routine handles more complex things than the example; in particular, the routine is
recursive after a fashion in order to handle building pipelines. The important thing about executing
programs, though, is that after the first child has been spawned, the child whose process id will
become the process group for this job, the terminal must be placed in this process group. If this
is not done, the program will not be executing in the foreground, of course this is what is wanted
if the command line contained an ampersand on the end. It is not terribly important wheter the
parent or the child sets the process group, as long as it gets done. In ksh, the parent shell handles
this.

11.2.3 Stopping a Job.

Job control refers to the shell’s ability to monitor and control jobs, which are processes or groups
of processes created for commands or pipelines. At a minimum, the shell keeps track of the status
of the background4 jobs that currently exist; this information can be displayed using the jobs
commands. If job control is fully enabled, using set -m or set -o monitor, as it is for interactive
shells, the processes of a job are placed in their own process group. Foreground jobs can be stopped
by typing the suspend character from the terminal, normally ^Z, jobs can be restarted in either the
foreground or background using the fg and bg commands, and the state of the terminal is saved
or restored when a foreground job is stopped or restarted, respectively. When an attempt is made
to exit the shell while there are jobs in the stopped state, the shell warns the user that there are
stopped jobs and does not exit. If another attempt is immediately made to exit the shell, the
stopped jobs are sent a SIGHUP signal and the shell exits. Similarly, if the nohup option is not set
and there are running jobs when an attempt is made to exit a login shell, the shell warns the user

4I.e. asynchronous.

158 CHAPTER 11. JOB CONTROL

and does not exit. If another attempt is immediately made to exit the shell, the running jobs are
sent a SIGHUP signal and the shell exits. Listing 11.6 shows how to make a child quit:

Listing 11.6: stopproc - make a child process quit.

1 /* -*- mode: c-mode; -*- */
2
3 /* stopproc.c file. */
4 #include <stdio.h>
5 #include <stdlib.h>
6 #include <string.h>
7 #include <errno.h>
8 #include <unistd.h>
9 #include <signal.h>

10 #include <sys/types.h>
11 #include <sys/signal.h>
12 #include <sys/proc.h>
13 #include <sys/wait.h>
14
15 /* stopproc program. */
16 #define FOREVER for (;;)
17
18 /* Functions prototypes. */
19 int main(int , char *[]);
20
21 /* Main function. */
22 int main(int argc , char * argv [])
23 {
24 int pgrp;
25 int status;
26 long int ret = EXIT_FAILURE;
27 pid_t pid;
28 struct sigaction signal = {
29 SIG_IGN ,
30 SIGQUIT ,
31 };
32
33 /* fork */
34 if((pid = fork()) == 0) {
35
36 /* Child execute code if pid == 0. */
37 printf("Child␣executed !\n");
38 FOREVER {
39 ;
40 }
41 _exit(EXIT_SUCCESS);
42 } else {
43
44 /* Parent executes otherwise. */
45 if(sigaction(SIGQUIT , &signal , NULL) >= 0) {
46 pgrp = getpgrp ();
47 printf("Parent␣waiting␣5␣seconds␣before␣make␣its␣child␣quit

.\n");

11.2. JOB CONTROL IN THE SHELL. 159

48 sleep (5);
49 if(killpg(pgrp , SIGQUIT) >= 0) {
50 printf("Parent␣make␣its␣child␣quit.\n");
51 while(wait(& status) != pid)
52 ;
53 printf("Child␣quitted !\n");
54 ret = EXIT_SUCCESS;
55 } else
56 perror("killpg");
57 } else
58 perror("sigaction");
59 }
60 exit(ret);
61 }
62
63 /* End of stopproc.c file. */

In fact using killpg would kill parent and child which are in the same process group. The
mechanism is to make the parent ignore the SIGQUIT and then let it propagate to all child processes
to kill them. In this case we have only one child. Do not use SIGKILL and SIGSTOP for this, since
they cannot be ignored5.

11.2.4 Backgrounding and Foregrounding a Job.

There are two ways to place a job in the background. The first is by placing an ampersand “&”
at the end of the command string when the command is first entered. Since this case is handled
when the processes are started and has little if anything to do with job control, it is not described
further here. The second method, using the bg command, involves sending a “continue” signal to
the job. Because the job is not in the foreground, otherwise the bg command could not have been
read by the shell, no process group manipulation is necessary. Bringing a job in the foreground is
more complex that putting it in the background. Because the job is not in the process group of the
terminal, the terminal’s process group must be changed. If the job is in the stop state it must be
started first. The code fragment 11.7 is taken by the system sources at /usr/src/bin/ksh/jobs.c.

Listing 11.7: j_resume - the ksh bg/fg commands default function.

1 /* fg and bg built -ins: called only if Flag(FMONITOR) set */
2 int j_resume(const char *cp, int bg)
3 {
4 Job *j;
5 Proc *p;
6 int ecode;
7 int running;
8 int rv = 0;
9 sigset_t omask;

10
11 sigprocmask(SIG_BLOCK , &sm_sigchld , &omask);
12
13 if ((j = j_lookup(cp, &ecode)) == NULL) {
14 sigprocmask(SIG_SETMASK , &omask , NULL);
15 bi_errorf("%s:␣%s", cp , lookup_msgs[ecode]);
16 return 1;

5See sigaction(2).

160 CHAPTER 11. JOB CONTROL

17 }
18
19 if (j->pgrp == 0) {
20 sigprocmask(SIG_SETMASK , &omask , NULL);
21 bi_errorf("job␣not␣job -controlled");
22 return 1;
23 }
24
25 if (bg)
26 shprintf("[%d]␣", j->job);
27
28 running = 0;
29 for (p = j->proc_list; p != NULL; p = p->next) {
30 if (p->state == PSTOPPED) {
31 p->state = PRUNNING;
32 p->status = 0;
33 running = 1;
34 }
35 shprintf("%s%s", p->command , p->next ? "|␣" : "");
36 }
37 shprintf("\n");
38 shf_flush(shl_stdout);
39 if (running)
40 j->state = PRUNNING;
41
42 put_job(j, PJ_PAST_STOPPED);
43 if (bg)
44 j_set_async(j);
45 else {
46 /* attach tty to job */
47 if (j->state == PRUNNING) {
48 if (ttypgrp_ok && (j->flags & JF_SAVEDTTY))
49 tcsetattr(tty_fd , TCSADRAIN , &j->ttystate);
50 /* See comment in j_waitj regarding saved_ttypgrp. */
51 if (ttypgrp_ok &&
52 tcsetpgrp(tty_fd , (j->flags & JF_SAVEDTTYPGRP) ?
53 j->saved_ttypgrp : j->pgrp) == -1) {
54 if (j->flags & JF_SAVEDTTY)
55 tcsetattr(tty_fd , TCSADRAIN , &tty_state);
56 sigprocmask(SIG_SETMASK , &omask , NULL);
57 bi_errorf("1st␣tcsetpgrp (%d,␣%d)␣failed:␣%s",
58 tty_fd ,
59 (int) ((j->flags & JF_SAVEDTTYPGRP) ?
60 j->saved_ttypgrp : j->pgrp),
61 strerror(errno));
62 return 1;
63 }
64 }
65 j->flags |= JF_FG;
66 j->flags &= ~JF_KNOWN;
67 if (j == async_job)
68 async_job = NULL;

11.3. JOB CONTROL OUTSIDE THE SHELL. 161

69 }
70
71 if (j->state == PRUNNING && killpg(j->pgrp , SIGCONT) == -1) {
72 int err = errno;
73
74 if (!bg) {
75 j->flags &= ~JF_FG;
76 if (ttypgrp_ok && (j->flags & JF_SAVEDTTY))
77 tcsetattr(tty_fd , TCSADRAIN , &tty_state);
78 if (ttypgrp_ok && tcsetpgrp(tty_fd , our_pgrp) == -1) {
79 warningf(true ,
80 "fg:␣2nd␣tcsetpgrp (%d,␣%d)␣failed:␣%s",
81 tty_fd , (int) our_pgrp ,
82 strerror(errno));
83 }
84 }
85 sigprocmask(SIG_SETMASK , &omask , NULL);
86 bi_errorf("cannot␣continue␣job␣%s:␣%s",
87 cp , strerror(err));
88 return 1;
89 }
90 if (!bg) {
91 if (ttypgrp_ok) {
92 j->flags &= ~(JF_SAVEDTTY | JF_SAVEDTTYPGRP);
93 }
94 rv = j_waitj(j, JW_NONE , "jw:resume");
95 }
96 sigprocmask(SIG_SETMASK , &omask , NULL);
97 return rv;
98 }

11.2.5 The jobs Command.

In the Korn shell the jobs command is used to print the status of all running jobs. If no jobs are
specified, all jobs are displayed. The -n option causes information to be displayed only for jobs that
have changed state since the last notification. If the -l option is used, the process ID of each process
in a job is also listed. The -p option causes only the process group of each job to be printed. See
Job control below for the format of job and the displayed job.

11.2.6 Waiting for Jobs.

The task of waiting for jobs to complete is give to the wait4 system call. Not only do we find out
about jobs that have exited, but we also find out about those that have changed their status.

11.2.7 Asynchronous Process Notification.

11.3 Job Control Outside the Shell.

As mentioned previously, processes that are not in the distinguished process group are not permitted
to read from terminal. In OpenBSD the process receives a SIGTTIN signal which causes it to stop.
The shell can then be used to place the job in the foreground and the read can be satisfied.

162 CHAPTER 11. JOB CONTROL

Processes are normally allowed to write to the terminal regardless of whether or not they are in the
foreground.

11.4 Important Points.

There are several important points to notice from this chapter and its examples:

• the examples in this chapter are for demonstration purposed only. They will work well enough
as a demonstration, but they would not be suitable for incorporation into real shell program.
In order to do this, it would be necessary to protect several areas of the code from interruption
by signals, in particular, since the SIGCHLD handler works on the same data structures as the
other routines, SIGCHLD must be ignored when modifying these structures, built-in commands
would have to be handled specially, such as interruption of shell procedures, stopping a process
which was executed from inside a shell construct such as foreach loop causes the rest of the
loop to to be aborted and so on;

• throughout the examples, whenever a process needed to be placed in the same process group
as the terminal, it was always the terminal process group that was changed. An alternative
method would have been to use setpgrp to change the process group of the process. There
is, however, a reason for changing the terminal’s process group and not the process’s: if the
process uses its own process group for something and obtains that information via getpgrp, the
if the shell changes the process’s process group that information will no longer be accurate.
For this reason, it is always the terminal’s process group that is changed;

• in Chapter 9, The Signal Stack., we mentioned that the shell will ignore SIGINT and SIGQUIT
in processes that it places in the background. This is not desirable when in a job control
environment, since there is no way, when bringing the job into the foreground, to cause these
signals not to be ignored anymore. Fortunately, it is not necessary to ignore these signals
in background processes when working with the tty driver. Recall that signals generated
from the keyboard are sent only to the process in the process group of the terminal. Since
background processes are not in this process group, they will not receive the signal anyway.
However, when they are placed into the foreground, the interrupt keys will work correctly,
since the background processes are not ignoring the signals themselves.

Job control is a very useful feature to have in OpenBSD system; unfortunately the implementation
is rather complex. Generally speaking, there is no way to implement part of the job control, it’s an
all-or-nothing prospect.

Chapter 12

Interprocess Communication.

Sockets.
Message Queues.
Semaphores.
Shared Memory.

The interprocess communication, ipc, facilities of OpenBSD system allow two or more distinct
processes to communicate with each other. We have already discussed one form of ipc, the pipe.
This mechanism allows two related processes, one of which must be a descendant of the other, to
communicate over a two-way byte stream using the read and write system calls. OpenBSD provide
more powerful ipc facilities that allow two or more completely unrelated process to communicate
with each other: semaphores, shared memory, messages queues and sockets. Each of these mech-
anism, while powerful in its own area, tends to be rather restrictive in the types of uses to which it
can be put. In OpenBSD the socket is a generalization of the pipe mechanism for which is, in fact,
implemented as a pair of connected sockets. The socket are described in the book [4] and the ipc
in the book [3].

12.1 Sockets.

Interprocess communication beyond the scope of the pipe mechanism can normally be described
using client/server model. In this model, one process is called the server; it is responsible for
satisfying requests put to it by the other process, the client. As an example, consider a program
tha manages all the printer queues on a machine. This program would be called a server. When
a user prints a file, the printing program, the client, contacts the server and asks it to put the
file into the queue for the specified printer. The server does this and then invokes the appropriate
program to actually print the file on the printer. Normally, when a server program is invoked, it
asks the operating system for a socket. When it gets one, it assigns a well-known name to that
socket, so that other programs can ask the operating system to talk to that name, since they will
not known the integer value of the socket itself. After naming the socket, the server listens on
the socket for connection requests from client processes to come in. When a connection request
arrives, the server may accept or reject the connection. If it accepts the connection, the operating
system joins the client and server together at the socket and the server may read and write data to
and from the socket just as if it were a pipe to the client. The client begins the process by asking
that the socket be connected to some other socket having a given name. The operating system
attempts to find a socket with the given name and if it does, sends the process listening to that
socket a connection request. If the server accepts the connection, the operating system joins the
two processes together at the socket and the client can read and write data to and from the socket
just as if it were a pipe to the server.

163

164 CHAPTER 12. INTERPROCESS COMMUNICATION.

12.1.1 The socket System Call.

socket creates an endpoint for communication and returns a descriptor. It takes three arguments:
the first is an integer which is the domain, it specifies a communications domain within which
communication will take place; this selects the protocol family which should be used. These
families are defined in the include file <sys/socket.h>. The currently understood formats are:

AF_UNIX UNIX internal protocols

AF_INET Internet Protocol version 4 (IPv4) protocol family

AF_INET6 Internet Protocol version 6 (IPv6) protocol family

The second argument is the socket type, which specifies the semantics of communication. Currently
defined types are:

• SOCK_STREAM;

• SOCK_DGRAM;

• SOCK_RAW;

• SOCK_SEQPACKET.

A SOCK_STREAM type provides sequenced, reliable, two-way connection based byte streams. An
out-of-band data transmission mechanism may be supported. A SOCK_DGRAM socket supports
datagrams, connectionless, unreliable messages of a fixed, typically small, maximum length. A
SOCK_SEQPACKET socket may provide a sequenced, reliable, two-way connection-based data trans-
mission path for datagrams of fixed maximum length; a consumer may be required to read an entire
packet with each read system call. This facility is protocol specific, and presently implemented
only for AF_UNIX. SOCK_RAW sockets provide access to internal network protocols and interfaces
and are available only to the super-user. Any combination of the following flags may additionally
be used in the type argument:

SOCK_CLOEXEC Set close-on-exec flag on the new descriptor.

SOCK_NONBLOCK Set non-blocking I/O mode on the new socket.

SOCK_DNS For domains AF_INET or AF_INET6, only allow connect(2), sendto(2) or sendmsg(2)
to the DNS port, typically 53.

The third argument is the protocol which specifies a particular protocol to be used with the socket.
Normally only a single protocol exists to support a particular socket type within a given protocol
family. However, it is possible that many protocols may exist, in which case a particular protocol
must be specified in this manner. This argument specifies the protocol number to use and it is
particular to the "communication domain" in which communication is to take place1. A value of 0
for this argument will let the system select an appropriate protocol for the requested socket type.
Sockets of type SOCK_STREAM are full-duplex byte streams. A stream socket must be in a connected
state before any data may be sent or received on it. A connection to another socket is created with
a connect(2) call. Once connected, data may be transferred using read(2) and write(2) calls or
some variant of the send(2) and recv(2) calls. When a session has been completed, a close(2) may
be performed. Out-of-band data may also be transmitted as described in send(2) and received as
described in recv(2). The communications protocols used to implement a SOCK_STREAM ensure that
data is not lost or duplicated. If a piece of data for which the peer protocol has buffer space cannot
be successfully transmitted within a reasonable length of time, then the connection is considered

1See protocols(5).

12.1. SOCKETS. 165

broken and calls will indicate an error with -1 returns and with ETIMEDOUT as the specific code in
the global variable errno. The protocols optionally keep sockets "warm" by forcing transmissions
roughly every minute in the absence of other activity. An error is then indicated if no response can
be elicited on an otherwise idle connection for an extended period, e.g., 5 minutes. A SIGPIPE
signal is raised if a process sends on a broken stream; this causes naive processes, which do not
handle the signal, to exit.

SOCK_SEQPACKET sockets employ the same system calls as SOCK_STREAM sockets. The only
difference is that read(2) calls will return only the amount of data requested,
and any remaining in the arriving packet will be discarded.

SOCK_DGRAM and SOCK_RAW sockets allow sending of datagrams to correspondents named
in send(2) calls. Datagrams are generally received with recvfrom(2), which
returns the next datagram with its return address.

An fcntl(2) call can be used to specify a process group to receive a SIGURG signal when the out-
of-band data arrives. It may also enable non-blocking I/O and asynchronous notification of I/O
events via SIGIO. The operation of sockets is controlled by socket level options. These options
are defined in the file <sys/socket.h>. setsockopt(2) and getsockopt(2) are used to set and get
options, respectively. If successful, socket returns a non-negative integer, the socket file descriptor.
Otherwise, a value of -1 is returned and errno is set to indicate the error.

12.1.2 The send and recv System Calls.

The send system call.

The send function shall initiate transmission of a message from the specified socket to its peer and
it shall send a message only when the socket is connected. If the socket is a connectionless-mode
socket, the message shall be sent to the pre-specified peer address. The send function takes four
arguments: the first is the socket file descriptor. The second is the pointer to the buffer containing
the message to send. The third specifies the length of the message in bytes and the last specifies
the type of message transmission. Values of this argument are formed by logically OR’ing zero or
more of the following flags:

MSG_EOR terminates a record, if supported by the protocol;

MSG_OOB sends out-of-band data on sockets that support out-of-band communications.
The significance and semantics of out-of-band data are protocol-specific;

MSG_NOSIGNAL Requests not to send the SIGPIPE signal if an attempt to send is made on a
stream-oriented socket that is no longer connected. The EPIPE error shall still
be returned.

The length of the message to be sent is specified by the third argument: if the message is too
long to pass through the underlying protocol, send shall fail and no data shall be transmitted.
Successful completion of a call to send does not guarantee delivery of the message. A return value
of -1 indicates only locally-detected errors. If space is not available at the sending socket to hold the
message to be transmitted, and the socket file descriptor does not have O_NONBLOCK set, send shall
block until space is available. If space is not available at the sending socket to hold the message
to be transmitted, and the socket file descriptor does have O_NONBLOCK set, send shall fail. The
select and poll functions can be used to determine when it is possible to send more data. The
socket in use may require the process to have appropriate privileges to use the send function. Upon
successful completion, send shall return the number of bytes sent. Otherwise, -1 shall be returned
and errno set to indicate the error.

166 CHAPTER 12. INTERPROCESS COMMUNICATION.

The recv system call.

The recv function shall receive a message from a connection-mode or connectionless-mode socket.
It is normally used with connected sockets because it does not permit the application to retrieve
the source address of received data. The recv function takes the following arguments: the first
argument is the socket which specifies the socket file descriptor. The second argument is the pointer
to the buffer where the message should be stored. The third is the length which specifies the length
in bytes of the buffer pointed to by the buffer argument. The fourth argument specifies the type
of message reception. Values of this argument are formed by logically OR’ing zero or more of the
following values:

MSG_PEEK peeks at an incoming message. The data is treated as unread and the next recv
or similar function shall still return this data;

MSG_OOB requests out-of-band data. The significance and semantics of out-of-band data
are protocol- specific;

MSG_WAITALL on SOCK_STREAM sockets this requests that the function block until the full amount
of data can be returned. The function may return the smaller amount of data if
the socket is a message-based socket, if a signal is caught, if the connection is
terminated, if MSG_PEEK was specified, or if an error is pending for the socket.

The recv function shall return the length of the message written to the buffer pointed to by the sec-
ond argument. For message-based sockets, such as
SOCK_DGRAM and SOCK_SEQPACKET, the entire message shall be read in a single operation. If
a message is too long to fit in the supplied buffer, and MSG_PEEK is not set in the flags argument,
the excess bytes shall be discarded. For stream-based sockets, such as SOCK_STREAM, message
boundaries shall be ignored. In this case, data shall be returned to the user as soon as it becomes
available, and no data shall be discarded. If the MSG_WAITALL flag is not set, data shall be returned
only up to the end of the first message. If no messages are available at the socket and O_NONBLOCK
is not set on the socket’s file descriptor, recv shall block until a message arrives. If no messages
are available at the socket and O_NONBLOCK is set on the socket’s file descriptor, recv shall fail and
set errno to EAGAIN or EWOULDBLOCK. Upon successful completion, recv shall return the length of
the message in bytes. If no messages are available to be received and the peer has performed an
orderly shutdown, recv shall return 0. Otherwise, -1 shall be returned and errno set to indicate
the error.

12.1.3 The listen System Call.

The listen function shall mark a connection-mode socket, specified by the first argument, as
accepting connections. The second argument provides a hint which the implementation shall use
to limit the number of outstanding connections in the socket’s listen queue. Implementations
may impose a limit on backlog and silently reduce the specified value. Normally, a larger backlog
argument value shall result in a larger or equal length of the listen queue. Implementations shall
support values of backlog up to SOMAXCONN, defined in <sys/socket.h>. The implementation
may include incomplete connections in its listen queue. The limits on the number of incomplete
connections and completed connections queued may be different. The implementation may have
an upper limit on the length of the listen queue – either global or per accepting socket. If the
second argument exceeds this limit, the length of the listen queue is set to the limit. If listen is
called with the second argument value that is less than 0, the function behaves as if it had been
called with an argument value of 0. The third argument equal to 0 may allow the socket to accept
connections, in which case the length of the listen queue may be set to an implementation-defined
minimum value. The socket in use may require the process to have appropriate privileges to use
the listen function. Upon successful completions, listen shall return 0; otherwise, -1 shall be
returned and errno set to indicate the error.

12.1. SOCKETS. 167

12.1.4 The shutdown System Call.

The shutdown function shall cause all or part of a full-duplex connection on the socket associ-
ated with the file descriptor socket to be shut down. The shutdown function takes the following
arguments: the first argument specifies the file descriptor of the socket and the second argument
specifies the type of shutdown. The values for this argument are as follows:

SHUT_RD disables further receive operations;

SHUT_WR disables further send operations;

SHUT_RDWR disables further send and receive operations.

The shutdown function disables subsequent send and/or receive operations on a socket, depending
on the value of the second argument. Upon successful completion, shutdown shall return 0;
otherwise, -1 shall be returned and errno set to indicate the error. The close system call could
be used to close a socket. If its first argument refers to a socket, close shall cause the socket to
be destroyed. If the socket is in connection-mode, and the SO_LINGER option is set for the socket
with non-zero linger time and the socket has untransmitted data, then close shall block for up to
the current linger interval until all data is transmitted.

12.1.5 The accept System Call.

Server process use this function call to accept a connection on the socket. The accept function
shall extract the first connection on the queue of pending connections, create a new socket with
the same socket type protocol and address family as the specified socket, and allocate a new file
descriptor for that socket. The accept function takes three arguments: the first argument specifies
a socket that was created with socket, has been bound to an address with bind and has issued a
successful call to listen. The second argument is either a null pointer or a pointer to a sockaddr
structure where the address of the connecting socket shall be returned. The third argument is
either a null pointer, if the second argument is a null pointer or a pointer to a socklen_t object
which on input specifies the length of the supplied sockaddr structure and on output specifies the
length of the stored address. If the second argument is not a null pointer, the address of the peer
for the accepted connection shall be stored in the sockaddr structure pointed to by this argument
and the length of this address shall be stored in the object pointed to by the third argument. If
the actual length of the address is greater than the length of the supplied sockaddr structure,
the stored address shall be truncated. If the protocol permits connections by unbound clients and
the peer is not bound, then the value stored in the object pointed to by the second argument is
unspecified. If the listen queue is empty of connection requests and O_NONBLOCK is not set on the
file descriptor for the socket, accept shall block until a connection is present. If the listen queue
is empty of connection requests and O_NONBLOCK is set on the file descriptor for the socket, accept
shall fail and set errno to EAGAIN or EWOULDBLOCK. The accepted socket cannot itself accept more
connections. The original socket remains open and can accept more connections. Upon successful
completion, accept shall return the non-negative file descriptor of the accepted socket. Otherwise,
-1 shall be returned, errno shall be set to indicate the error, and any object pointed to by the third
argument shall remain unchanged.

12.1.6 The connect System Call.

connect is used by the client process to establish a connection with a server. The function shall
attempt to make a connection on a connection-mode socket or to set or reset the peer address
of a connectionless-mode socket. The function takes the following arguments: the first argument
specifies the file descriptor associated with the socket. The second argument specifies a pointer to
a sockaddr structure containing the peer address. The length and format of the address depend

168 CHAPTER 12. INTERPROCESS COMMUNICATION.

on the address family of the socket. The third argument specifies the length of the sockaddr
structure pointed to by the second argument. If the socket has not already been bound to a local
address, connect shall bind it to an address which, unless the socket’s address family is AF_UNIX,
is an unused local address. If the initiating socket is not connection-mode, then connect shall
set the socket’s peer address, and no connection is made. For SOCK_DGRAM sockets, the peer
address identifies where all datagrams are sent on subsequent send functions and limits the remote
sender for subsequent recv functions. If the sa_family member of the structure pointer by the
second argument is AF_UNSPEC, the socket’s peer address shall be reset. Note that despite no
connection being made, the term “connected” is used to describe a connectionless-mode socket
for which a peer address has been set. If the initiating socket is connection-mode, then connect
shall attempt to establish a connection to the address specified by the address argument. If the
connection cannot be established immediately and O_NONBLOCK is not set for the file descriptor for
the socket, connect shall block for up to an unspecified timeout interval until the connection is
established. If the timeout interval expires before the connection is established, connect shall fail
and the connection attempt shall be aborted. If connect is interrupted by a signal that is caught
while blocked waiting to establish a connection, connect shall fail and set errno to EINTR, but the
connection request shall not be aborted, and the connection shall be established asynchronously. If
the connection cannot be established immediately and O_NONBLOCK is set for the file descriptor for
the socket, connect shall fail and set errno to EINPROGRESS, but the connection request shall not be
aborted, and the connection shall be established asynchronously. Subsequent calls to connect for
the same socket, before the connection is established, shall fail and set errno to EALREADY. When
the connection has been established asynchronously, pselect, select and poll shall indicate that
the file descriptor for the socket is ready for writing. The socket in use may require the process
to have appropriate privileges to use the connect function. Upon successful completion, connect
shall return 0; otherwise, -1 shall be returned and errno set to indicate the error.

12.1.7 Connectionless Sockets.

Sockets that use the SOCK_DGRAM method of communication do not need to be connected in order
to be used. This is because modified versions of recv, sendto and recvfrom are used to send
and receive datagrams.

12.1.8 The sendto System Call.

The sendto function shall send a message through a connection-mode or connectionless-mode
socket. If the socket is a connectionless-mode socket, the message shall be sent to the address
specified by the fifth argument if no pre-specified peer address has been set. If a peer address has
been pre-specified, either the message shall be sent to the address specified by the fifth argument,
overriding the pre-specified peer address, or the function shall return -1 and set errno to EISCONN. If
the socket is connection-mode, fifth argument be ignored. The sendto function takes the following
arguments: the first argument specifies the socket file descriptor. The second argument is a pointer
to a buffer containing the message to be sent. The third argument specifies the size of the message
in bytes. The fourth argument specifies the type of message transmission. Values of this argument
are formed by logically OR’ing zero or more of the following flags:

MSG_EOR terminates a record, if supported by the protocol;

MSG_OOB sends out-of-band data on sockets that support out-of-band data. The signif-
icance and semantics of out-of-band data are protocol-specific;

MSG_NOSIGNAL requests not to send the SIGPIPE signal if an attempt to send is made on a
stream-oriented socket that is no longer connected. The EPIPE error shall still
be returned.

12.1. SOCKETS. 169

the fifth argument points to a sockaddr structure containing the destination address. The length
and format of the address depend on the address family of the socket. The sixth argument specifies
the length of the sockaddr structure pointed to by the fifth argument. If the socket protocol
supports broadcast and the specified address is a broadcast address for the socket protocol, sendto
shall fail if the SO_BROADCAST option is not set for the socket. The fifth argument specifies
the address of the target. The third argument specifies the length of the message. Successful
completion of a call to sendto does not guarantee delivery of the message. A return value of -1
indicates only locally-detected errors. If space is not available at the sending socket to hold the
message to be transmitted and the socket file descriptor does not have O_NONBLOCK set, sendto
shall block until space is available. If space is not available at the sending socket to hold the
message to be transmitted and the socket file descriptor does have O_NONBLOCK set, sendto shall
fail. The socket in use may require the process to have appropriate privileges to use the sendto
function. Upon successful completion, sendto shall return the number of bytes sent. Otherwise,
-1 shall be returned and errno set to indicate the error.

12.1.9 The recvfrom System Call.

The recvfrom function shall receive a message from a connection-mode or connectionless-mode
socket. It is normally used with connectionless-mode sockets because it permits the application to
retrieve the source address of received data. The recvfrom function takes the following arguments:
the first arument specifies the socket file descriptor. The second argument is a pointer which points
to the buffer where the message should be stored. The third argument specifies the length in bytes
of the buffer pointed to by the buffer argument. The fourth argument specifies the type of message
reception. Values of this argument are formed by logically OR’ing zero or more of the following
values:

MSG_PEEK peeks at an incoming message. The data is treated as unread and the next
recvfrom or similar function shall still return this data;

MSG_OOB requests out-of-band data. The significance and semantics of out-of-band data
are protocol-specific;

MSG_WAITALL on SOCK_STREAM sockets this requests that the function block until the full amount
of data can be returned. The function may return the smaller amount of data if
the socket is a message-based socket, if a signal is caught, if the connection is
terminated, if MSG_PEEK was specified, or if an error is pending for the socket.

The fifth argument is a pointer to a sockaddr structure in which the sending address is to be
stored. The length and format of the address depend on the address family of the socket. The
sixth argument is either a null pointer, if address is a null pointer or a pointer to a socklen_t object
which on input specifies the length of the supplied sockaddr structure, and on output specifies the
length of the stored address. The recvfrom function shall return the length of the message written
to the buffer pointed to by the buffer argument. For message-based sockets, such as SOCK_RAW,
SOCK_DGRAM and SOCK_SEQPACKET, the entire message shall be read in a single operation. If a
message is too long to fit in the supplied buffer and MSG_PEEK is not set in the fourth argument,
the excess bytes shall be discarded. For stream-based sockets, such as SOCK_STREAM, message
boundaries shall be ignored. In this case, data shall be returned to the user as soon as it becomes
available, and no data shall be discarded. If the MSG_WAITALL flag is not set, data shall be returned
only up to the end of the first message. Not all protocols provide the source address for messages.
If the fifth argument is not a null pointer and the protocol provides the source address of messages,
the source address of the received message shall be stored in the sockaddr structure pointed to by
the fifth argument and the length of this address shall be stored in the object pointed to by the sixth
argument. If the actual length of the address is greater than the length of the supplied sockaddr
structure, the stored address shall be truncated. If the fifth argument is not a null pointer and the

170 CHAPTER 12. INTERPROCESS COMMUNICATION.

protocol does not provide the source address of messages, the value stored in the object pointed to
by the fifth argument is unspecified. If no messages are available at the socket and O_NONBLOCK is
not set on the socket’s file descriptor, recvfrom shall block until a message arrives. If no messages
are available at the socket and O_NONBLOCK is set on the socket’s file descriptor, recvfrom shall
fail and set errno to EAGAIN or EWOULDBLOCK. Upon successful completion, recvfrom shall return
the length of the message in bytes. If no messages are available to be received and the peer has
performed an orderly shutdown, recvfrom shall return 0. Otherwise, the function shall return -1
and set errno to indicate the error.

12.1.10 A Small Client Program.

In listing 12.1 there’s a program demonstrating a client connection to a server running on the
localhost:

Listing 12.1: client - client program to demonstrate sockets.

1 /* -*- mode: c-mode; -*- */
2
3 /* File client.c */
4 #include <stdio.h>
5 #include <stdlib.h>
6 #include <string.h>
7 #include <stdint.h>
8 #include <stddef.h>
9 #include <inttypes.h>

10 #include <unistd.h>
11 #include <sys/types.h>
12 #include <sys/socket.h>
13 #include <netinet/in.h>
14 #include <arpa/inet.h>
15
16 /* client program. */
17 #define SERVER_PORT 10240
18 #define FOREVER for (;;)
19
20 /* Functions prototypes. */
21 long int client(struct sockaddr_in *);
22 int main(int , char *[]);
23
24 /* Main function. */
25 int main(int argc , char *argv [])
26 {
27 int res;
28 long int ret;
29 struct sockaddr_in servaddr;
30
31 /* */
32 servaddr.sin_family = AF_INET;
33 servaddr.sin_port = htons(SERVER_PORT);
34 res = inet_pton(AF_INET , "127.0.0.1", &servaddr.sin_addr);
35 ret = client (& servaddr);
36 exit(ret);
37 }

12.1. SOCKETS. 171

38
39 /*
40 * client -- the client function.
41 */
42 long int client(struct sockaddr_in *sa)
43 {
44 int sockfd;
45 long int ret = EXIT_FAILURE;
46 char *buff[BUFSIZ];
47
48 /* */
49 if(sa) {
50 if((sockfd = socket(AF_INET , SOCK_STREAM , 0)) >= 0) {
51 printf("Created␣socket:␣%d\n", sockfd);
52 if(connect(sockfd , (struct sockaddr *) sa, sizeof(struct

sockaddr_in)) >= 0) {
53 printf("Connected␣to␣0x%0.8x,␣port␣0x%0.4x\n", (u_int32_t

) sa -> sin_addr.s_addr , ntohs(sa -> sin_port));
54 if(recv(sockfd , (void *) buff , BUFSIZ , MSG_WAITALL) >= 0)

{
55 printf("Received␣data␣from␣server:␣%s\n", buff);
56 ret = EXIT_SUCCESS;
57 } else
58 perror("recv");
59 } else
60 perror("connect");
61 close(sockfd);
62 } else
63 perror("socket");
64 } else
65 fprintf(stderr , "NULL␣address␣passed .\n");
66 return ret;
67 }
68
69 /* End of client.c file. */

12.1.11 A Small Server Program.

The server program in listing 12.2 works with the previous example, the client program:

Listing 12.2: server - server program to demonstrate sockets.
1 /* -*- mode: c-mode; -*- */
2
3 /* File server.c */
4 #include <stdio.h>
5 #include <stdlib.h>
6 #include <string.h>
7 #include <stdint.h>
8 #include <stddef.h>
9 #include <inttypes.h>

10 #include <unistd.h>
11 #include <time.h>

172 CHAPTER 12. INTERPROCESS COMMUNICATION.

12 #include <errno.h>
13 #include <sys/time.h>
14 #include <sys/types.h>
15 #include <sys/socket.h>
16 #include <netinet/in.h>
17 #include <arpa/inet.h>
18
19 /* server program. */
20 #define SERVER_PORT 10240
21 #define FOREVER for (;;)
22
23 /* Functions prototypes. */
24 long int server(struct sockaddr_in *);
25 int main(int , char *[]);
26
27 /* Main function. */
28 int main(int argc , char *argv [])
29 {
30 long int ret;
31 struct sockaddr_in servaddr;
32
33 /* clear the address structures in memory. */
34 bzero(&servaddr , sizeof(struct sockaddr_in));
35
36 /* setup structures. */
37 servaddr.sin_family = AF_INET;
38 servaddr.sin_addr.s_addr = htonl(INADDR_ANY);
39 servaddr.sin_port = htons(SERVER_PORT);
40 ret = server (& servaddr);
41 exit(ret);
42 }
43
44 /*
45 * client -- the client function.
46 */
47 long int server(struct sockaddr_in *sa)
48 {
49 char *buff;
50 int listenfd , connfd;
51 long int ret = EXIT_FAILURE;
52 struct timeval now;
53 struct sockaddr_in cliaddr;
54 socklen_t cliaddrlen = sizeof(struct sockaddr_in);
55 pid_t pid;
56
57 /* */
58 if(sa) {
59 bzero(&cliaddr , sizeof(struct sockaddr_in));
60 if((listenfd = socket(AF_INET , SOCK_STREAM , 0)) >= 0) {
61 if(bind(listenfd , (struct sockaddr *) sa, sizeof(struct

sockaddr_in)) >= 0) {
62 printf("Waiting␣to␣accept␣a␣connection ...\n");

12.1. SOCKETS. 173

63 if(listen(listenfd , 0) >= 0) {
64 FOREVER {
65 cliaddrlen = sizeof(cliaddr);
66 if((connfd = accept(listenfd , (struct sockaddr *) &

cliaddr , &cliaddrlen)) >= 0) {
67 printf("Accepted␣connection␣from␣0x%0.8x,␣port␣0x

%0.4x\n", cliaddr.sin_addr , ntohs(cliaddr.
sin_port));

68 if((pid = fork()) == 0) {
69 close(listenfd);
70 if(gettimeofday (&now , NULL) >= 0) {
71 buff = ctime(&now.tv_sec);
72 if(buff) {
73 if(send(connfd , (void *) buff , strnlen(buff ,

BUFSIZ), 0) >= 0) {
74 ret = EXIT_SUCCESS;
75 break;
76 } else {
77 perror("send");
78 break;
79 }
80 } else {
81 fprintf(stderr , "empty␣time␣string");
82 break;
83 }
84 } else {
85 perror("gettimeofday");
86 break;
87 }
88 }
89 close(connfd);
90 } else {
91 perror("accept");
92 break;
93 }
94 }
95 } else
96 perror("listen");
97 } else
98 perror("bind");
99 } else

100 perror("socket");
101 } else
102 fprintf(stderr , "NULL␣address␣passed .\n");
103 return ret;
104 }
105
106 /* End of server.c file. */

174 CHAPTER 12. INTERPROCESS COMMUNICATION.

12.2 Message Queues.

Message queues are a cross between a virtual circuit and datagrams. Distinct message “packets”
are exchanged between processes using a queue mechanism so that data arrives in order, but the
messages can be received in more or less any order determined by the receiving process(es). A
message queue is defined by a unique identifier called a queue id, which is usually a long integer.
The queue itself is described by the following structure contained in <sys/msg.h>, <sys/types.h>
must be included before too:

Listing 12.3: The msqid_ds structure.
struct msqid_ds {

struct ipc_perm msg_perm;
struct msg *msg_first;
struct msg *msg_last;
unsigned long msg_cbytes;
unsigned long msg_qnum;
unsigned long msg_qbytes;
pid_t msg_lspid;
pid_t msg_lrpid;
time_t msg_stime;
long msg_pad1;
time_t msg_rtime;
long msg_pad2;
time_t msg_ctime;
long msg_pad3;
long msg_pad4[4];

};

The meanings of the structure members are:

msg_perm msg queue permission bits;

msg_first first message in the queue;

msg_last last message in the queue;

msg_cbytes number of bytes in use on the queue;

msg_qnum number of msgs in the queue;

msg_qbytes maximum number of bytes on the queue;

msg_lspid pid of last msgsnd;

msg_lrpid pid of last msgrcv;

msg_stime time of last msgsnd;

msg_pad1 structure pad member;

msg_rtime time of last msgrcv;

msg_pad2 structure pad member;

msg_ctime time of last msgctl;

msg_pad3 structure pad member;

12.2. MESSAGE QUEUES. 175

msg_pad4 structure pad member.

The ipc_perm structure defines the permissions on the message queue. It is defined in the include
file <sys/ipc.h>:

Listing 12.4: The ipc_perm structure.
struct ipc_perm {

uid_t cuid;
gid_t cgid;
uid_t uid;
gid_t gid;
mode_t mode;
unsigned short seq;
key_t key;

};

The members are defined as:

cuid creator user id;

cgid creator group id;

uid user id;

gid group id;

mode r/w permission this is a bit mask:

• IPC_R — read permission;

• IPC_W — write/alter permission;

• IPC_M — permission to change control info.

seq sequence number, to generate unique msg/sem/shmid;

key user specified msg/sem/shm key.

12.2.1 The msgget System Call.

The msgget function operates on XSI message queues2. The msgget function shall return the
message queue identifier associated with the argument key. A message queue identifier, associated
message queue and data structure3, shall be created for the first argument if one of the following
is true:

• the first agument is equal to IPC_PRIVATE;

• the first argument does not already have a message queue identifier associated with it and
(msgflg & IPC_CREAT) is non-zero.

Upon creation, the data structure associated with the new message queue identifier shall be initial-
ized as follows:

• msg_perm.cuid, msg_perm.uid, msg_perm.cgid and msg_perm.gid shall be set to the
effective user id and effective group id, respectively, of the calling process;

• the low-order 9 bits of msg_perm.mode shall be set to the low-order 9 bits of msgflg;

2See the Base Definitions volume of POSIX.1-2017, Section 3.226, Message Queue.
3See <sys/msg.h>.

176 CHAPTER 12. INTERPROCESS COMMUNICATION.

• msg_qnum, msg_lspid, msg_lrpid, msg_stime and msg_rtime shall be set to 0;

• msg_ctime shall be set to the current time;

• msg_qbytes shall be set to the system limit.

Upon successful completion, msgget shall return a non-negative integer, namely a message queue
identifier. Otherwise, it shall return -1 and set errno to indicate the error.

12.2.2 The msgctl System Call.

The msgctl function operates on XSI message queues. This function takes three arguments and
shall provide message control operations as specified by the second argument. The following values
for the second argument and the message control operations they specify, are:

IPC_STAT place the current value of each member of the msqid_ds data structure associated
with msqid into the structure pointed to by the third argument. The contents of this
structure are defined in <sys/msg.h>;

IPC_SET set the value of the following members of the msqid_ds data structure associated with
the first parameter to the corresponding value found in the structure pointed to by the
third argument:
msg_perm.uid

msg_perm.gid

msg_perm.mode

msg_qbytes

Also, the msg_ctime timestamp shall be set to the current time. IPC_SET can only be
executed by a process with appropriate privileges or that has an effective user id equal
to the value of msg_perm.cuid or msg_perm.uid in the msqid_ds data structure
associated with the first parameter. Only a process with appropriate privileges can
raise the value of msg_qbytes;

IPC_RMID remove the message queue identifier specified by the first argument from the system and
destroy the message queue and msqid_ds data structure associated with it. IPC_RMD
can only be executed by a process with appropriate privileges or one that has an effective
user id equal to the value of msg_perm.cuid or msg_perm.uid in the msqid_ds data
structure associated with the value in the first argument.

Upon successful completion, msgctl shall return 0; otherwise, it shall return -1 and set errno to
indicate the error.

12.2.3 The msgsnd and msgrcv System Calls.

The msgsnd function operates on XSI message queues. The function take four arguments and shall
send a message to the queue associated with the message queue identifier specified by the first
argument value. The application shall ensure that the second argument points to a user-defined
buffer that contains first a field of type long specifying the type of the message and then a data
portion that holds the data bytes of the message. The structure below is an example of what this
user- defined buffer might look like:

Listing 12.5: Custom mymsg structure.
struct mymsg {

long mtype;
char mtext[1];

}

12.2. MESSAGE QUEUES. 177

The structure member mtype is a non-zero positive type long that can be used by the receiving
process for message selection. The structure member mtext is any text of length which is the third
argument value in bytes. This argument can range from 0 to a system-mposed maximum. The
fourth and last argument specifies the action to be taken if one or more of the following is true:

• the number of bytes already on the queue is equal to msg_qbytes4;

• the total number of messages on all queues system-wide is equal to the system-imposed limit.

These actions are as follows:

• if (msgflg & IPC_NOWAIT) is non-zero, the message shall not be sent and the calling thread
shall return immediately;

• if (msgflg & IPC_NOWAIT) is 0, the calling thread shall suspend execution until one of the
following occurs:

– the condition responsible for the suspension no longer exists, in which case the message
is sent;

– the message queue identifier msqid is removed from the system; when this occurs, errno
shall be set to EIDRM and -1 shall be returned;

– the calling thread receives a signal that is to be caught; in this case the message is not
sent and the calling thread resumes execution in the manner prescribed in sigaction;

Upon successful completion, the following actions are taken with respect to the data structure
associated with msqid5;

• msg_qnum shall be incremented by 1.

• msg_lspid shall be set to the process id of the calling process.

• msg_stime shall be set to the current time.

Upon successful completion, msgsnd shall return 0; otherwise, no message shall be sent, msgsnd
shall return -1 and errno shall be set to indicate the error. The msgrcv function operates on
XSI message queues as the msgsnd function and it takes five arguments. The function shall read a
message from the queue associated with the message queue identifier specified by the first argument
and place it in the user-defined buffer pointed to by the second argument pointer. The application
shall ensure that the second argument points to a user-defined buffer that contains first a field of
type long, specifying the type of the message and then a data portion that holds the data bytes
of the message. The user defined structure is the same of the msgsnd function. The structure
member mtype is the received message’s type as specified by the sending process. The structure
member mtext is the text of the message. The third argument specifies the size in bytes of the
member mtext. The received message shall be truncated to the third argument value in bytes if
it is larger and (msgflg & MSG_NOERROR) is non-zero. The truncated part of the message shall
be lost and no indication of the truncation shall be given to the calling process. If the value of
the thord argument is greater than SSIZE_MAX, the result is implementation-defined. The fourth
argument specifies the type of message requested as follows:

• if is 0, the first message on the queue shall be received;

• if is greater than 0, the first message of type msgtyp shall be received;

4See <sys/msg.h>.
5See <sys/msg.h>.

178 CHAPTER 12. INTERPROCESS COMMUNICATION.

• if is less than 0, the first message of the lowest type that is less than or equal to the absolute
value of the fourth argument shall be received.

The fifth argument specifies the action to be taken if a message of the desired type is not on the
queue. These are as follows:

• if (msgflg & IPC_NOWAIT) is non-zero, the calling thread shall return immediately with a
return value of -1 and errno set to ENOMSG.

• if (msgflg & IPC_NOWAIT) is 0, the calling thread shall suspend execution until one of the
following occurs:

– a message of the desired type is placed on the queue;

– the message queue identifier msqid is removed from the system; when this occurs, errno
shall be set to EIDRM and -1 shall be returned;

– the calling thread receives a signal that is to be caught; in this case a message is not re-
ceived and the calling thread resumes execution in the manner prescribed in sigaction.

Upon successful completion, the following actions are taken with respect to the data structure
associated with msqid:

• msg_qnum shall be decremented by 1;

• msg_lrpid shall be set to the process id of the calling process;

• msg_rtime shall be set to the current time.

Upon successful completion, msgrcv shall return a value equal to the number of bytes actually
placed into the buffer mtext. Otherwise, no message shall be received, msgrcv shall return -1,
and errno shall be set to indicate the error. Listing 12.6 shows a server program that creates a
message queue and then waits for a message to be sent to it. After it receives the message, the
program will respond with a message of its own:

Listing 12.6: mq-server - server program to demonstrate message queues.
1 /* -*- mode: c-mode; -*- */
2
3 /* File mqserver.c. */
4 #include <stdio.h>
5 #include <stdlib.h>
6 #include <string.h>
7 #include <unistd.h>
8 #include <sys/types.h>
9 #include <sys/ipc.h>

10 #include <sys/msg.h>
11
12 /* mqserver program. */
13 #define MSGSZ 128
14 #define FOREVER for (;;)
15
16 /* Declare the message structure. */
17 struct tagMessage {
18 long mtype;
19 char mtext[MSGSZ];
20 };
21

12.2. MESSAGE QUEUES. 179

22 typedef struct tagMessage message_t;
23
24 /* Functions prototypes. */
25 int main(int , char *[]);
26
27 /* Main function. */
28 int main(int argc , char *argv [])
29 {
30 long int ret = EXIT_FAILURE;
31 int msqid;
32 key_t key;
33 message_t sbuf , rbuf;
34
35 /* Create a message queue with "name" 1234. */
36 key = 1234;
37
38 /*
39 * We want to let everyone read and
40 * write on this message queue , hence
41 * we use 0666 as the permissions.
42 */
43 if((msqid = msgget(key , IPC_CREAT | 0666)) >= 0) {
44 printf("Wait␣for␣a␣client␣message .\n");
45
46 /* Receive a message. */
47 if(msgrcv(msqid , &rbuf , MSGSZ , 0, 0) >= 0) {
48
49 /* Print the client message. */
50 printf("client␣message:␣%s\n", rbuf.mtext);
51
52 /* We send a message of type 2. */
53 sbuf.mtype = 2;
54 snprintf(sbuf.mtext , MSGSZ , "I␣received␣your␣message.");
55
56 /* Send an answer. */
57 if(msgsnd(msqid , &sbuf , strnlen(sbuf.mtext , MSGSZ) + 1, 0)

>= 0) {
58 if(msgctl(msqid , IPC_RMID , NULL) >= 0)
59 ret = EXIT_SUCCESS;
60 else
61 perror("msgctl");
62 } else
63 perror("msgsnd");
64 } else
65 perror("msgrcv");
66 } else
67 perror("msgget");
68
69 /* Exit. */
70 exit(ret);
71 }
72

180 CHAPTER 12. INTERPROCESS COMMUNICATION.

73 /* End of mqserver.c file. */

Listing 12.7 show a client process that sends a message to the server and then waits for a re-
sponse and prints it on the screen. Before running the program, start up the server process in the
background:

Listing 12.7: mq-client - client program to demonstrate message queues.
1 /* -*- mode: c-mode; -*- */
2
3 /* File mqclient.c. */
4 #include <stdio.h>
5 #include <stdlib.h>
6 #include <string.h>
7 #include <unistd.h>
8 #include <sys/types.h>
9 #include <sys/ipc.h>

10 #include <sys/msg.h>
11
12 /* mqclient program. */
13 #define MSGSZ 128
14 #define FOREVER for (;;)
15
16 /* Declare the message structure. */
17 struct tagMessage {
18 long mtype;
19 char mtext[MSGSZ];
20 };
21
22 typedef struct tagMessage message_t;
23
24 /* Functions prototypes. */
25 int main(int , char *[]);
26
27 /* Main function. */
28 int main(int argc , char *argv [])
29 {
30 long int ret = EXIT_FAILURE;
31 int msqid;
32 key_t key;
33 message_t sbuf , rbuf;
34
35 /* Create a message queue with "name" 1234. */
36 key = 1234;
37
38 /*
39 * Get the message queue id for the
40 * "name" 1234, which was created by
41 * the server.
42 */
43 if((msqid = msgget(key , 0666)) >= 0) {
44
45 /*
46 * We’ll send message type 1, the server

12.3. SEMAPHORES. 181

47 * will send message type 2.
48 */
49 sbuf.mtype = 1;
50 snprintf(sbuf.mtext , MSGSZ , "Did␣you␣get␣this?");
51
52 /* Send message. */
53 if(msgsnd(msqid , &sbuf , strnlen(sbuf.mtext , MSGSZ) + 1, 0) >=

0) {
54
55 /* Receive an answer of message type 2. */
56 if(msgrcv(msqid , &rbuf , strnlen(rbuf.mtext , MSGSZ) + 1, 2,

0) >= 0) {
57
58 /* Print the answer. */
59 printf("server␣message:␣%s\n", rbuf.mtext);
60 ret = EXIT_SUCCESS;
61 } else
62 perror("msgrcv");
63 } else
64 perror("msgsnd");
65 } else
66 perror("msgget");
67
68 /* Exit. */
69 exit(ret);
70 }
71
72 /* End of mqclient.c file. */

12.3 Semaphores.

Semaphores are special types of flags used for signalling between two processes. They are tipically
used to guard “critical sections” of code that modify shared data structures. In general, a section
of code is written so that it cannot begin until a given semaphore is equal to a specific value. For
example a program might wait until the semaphore is equal to zero. Then it would set the semaphore
to one and perform some actions with a shared data structure and then reset the semaphore to
zero. Other processes, also waiting until the semaphore is equal to zero, are effectively “locked out”
from modifying the data structure while it is in use. When the semaphore becomes equal to zero
again, the system will allow one of the waiting process to proceed. Semaphores are allocated in
sets; each set is defined by unique semaphore id. The semaphores in a semaphore set are numbered
consecutively starting from zero. The sets themselves are described in a structure of type semid_ds,
declared in the include file <sys/sem.h>, <sys/types.h> must also be included:

Listing 12.8: The semid_ds structure.

struct semid_ds {
struct ipc_perm sem_perm;
struct sem *sem_base;
unsigned short sem_nsems;
time_t sem_otime;
long sem_pad1;
time_t sem_ctime;

182 CHAPTER 12. INTERPROCESS COMMUNICATION.

long sem_pad2;
long sem_pad3[4];

};

The members are defined as:

sem_perm operation permission struct;

sem_base pointer to first semaphore in set;

sem_nsems number of sems in set;

sem_otime last operation time;

sem_pad1 SVABI/386 says I need this here (LOLx1);

sem_ctime last change time. Times measured in secs since 00:00:00 GMT, Jan. 1, 1970;

sem_pad2 SVABI/386 says I need this here (LOLx2);

sem_pad3 SVABI/386 says I need this here (LOLx3).

12.3.1 The semget System Call.

The semget system call takes three arguments and returns the semaphore identifier associated
with the first argument which is the key. A new set containing a number of semaphores as per
the second argument is created if either the first argument is equal to IPC_PRIVATE or the second
argument does not have a semaphore set associated with it and the IPC_CREAT bit is set in the
third argument. The access modes of the created semaphores is specified in the third argument as
a bitwise OR of zero or more of the following values:

SEM_A alter permission for owner SEM_R read permission for owner;

(SEM_A>>3) alter permission for group (SEM_R >> 3) read permission for group;

(SEM_A>>6) alter permission for other (SEM_R >> 6) read permission for other;

If a new set of semaphores is created, the data structure associated with it, the semid_ds structure,
is initialized as follows:

• sem_perm.cuid and sem_perm.uid are set to the effective UID of the calling process;

• sem_perm.gid and sem_perm.cgid are set to the effective GID of the calling process;

• sem_perm.mode is set to the lower 9 bits of the third argument;

• sem_nsems is set to the value of the second argument;

• sem_ctime is set to the current time;

• sem_otime is set to 0.

semget returns a non-negative semaphore identifier if successful. Otherwise, -1 is returned and
errno is set to reflect the error.

12.3. SEMAPHORES. 183

12.3.2 The semctl System Call.

The semctl system call takes four arguments and provides a number of control operations on the
semaphore specified by the fourth argument and the first one. The operation to be performed is
specified in the third argument. The fourth argument is a union of the following fields:

int val; /* value for SETVAL */
struct semid_ds *buf; /* buffer for IPC_{STAT ,SET} */
u_short *array; /* array for GETALL & SETALL */

The semid_ds structure used in the IPC_SET and IPC_STAT commands is defined as follows in
<sys/sem.h>. See 12.8. The ipc_perm structure used inside the semid_ds structure is defined in
<sys/ipc.h>. See 12.4. semctl provides the following operations:

GETVAL return the value of the semaphore;

SETVAL set the value of the semaphore to arg.val;

GETPID return the pid of the last process that did an operation on this semaphore;

GETNCNT return the number of processes waiting to acquire the semaphore;

GETZCNT return the number of processes waiting for the value of the semaphore to reach 0;

GETALL return the values for all the semaphores associated with semid;

SETALL set the values for all the semaphores that are associated with the semaphore identifier
semid to the corresponding values in arg.array;

IPC_STAT gather statistics about a semaphore and place the information in the semid_ds struc-
ture pointed to by arg.buf;

IPC_SET set the value of the sem_perm.uid, sem_perm.gid and sem_perm.mode fields in
the structure associated with the semaphore. The values are taken from the cor-
responding fields in the structure pointed to by arg.buf. This operation can only
be executed by the super-user or a process that has an effective user id equal to
either sem_perm.cuid or sem_perm.uid in the data structure associated with the
message queue;

IPC_RMID remove the semaphores associated with semid from the system and destroy the data
structures associated with it. Only the super-user or a process with an effective
UID equal to the sem_perm.cuid or sem_perm.uid values in the data structure
associated with the semaphore can do this.

The permission to read or change a message queue6 is determined by the sem_perm.mode field in the
same way as is done with files7, but the effective UID can match either the sem_perm.cuid field or
the sem_perm.uid field and the effective GID can match either sem_perm.cgid or sem_perm.gid.
For the GETVAL, GETPID, GETNCNT and GETZCNT operations, semctl returns one of the values
described above if successful. All other operations will make semctl return 0 if no errors occur.
Otherwise -1 is returned and errno set to reflect the error.

6See semop(2).
7See chmod(2).

184 CHAPTER 12. INTERPROCESS COMMUNICATION.

12.3.3 The semop System Call.

semop provides a number of atomic operations on a set of semaphores. It takes three arguments.
The semaphore set is specified by its first argument. The second argument is an array of semaphore
operations and the third is the number of operations in this array. The sembuf structures in the
array contain the following members:

u_short sem_num; /* semaphore # */
short sem_op; /* semaphore operation */
short sem_flg; /* operation flags */

Each operation, specified in sem_op, is applied to semaphore number sem_num in the set of
semaphores specified by the first function argument. The value of sem_op determines the ac-
tion taken in the following way:

• sem_op is less than 0. The current process is blocked until the value of the semaphore is
greater than or equal to the absolute value of sem_op. The absolute value of sem_op is
then subtracted from the value of the semaphore and the calling process continues. Negative
values of sem_op are thus used to enter critical regions;

• sem_op is greater than 0. Its value is added to the value of the specified semaphore. This is
used to leave critical regions;

• sem_op is equal to 0. The calling process is blocked until the value of the specified semaphore
reaches 0.

The behavior of each operation is influenced by the flags set in sem_flg in the following way:

IPC_NOWAIT in the case where the calling process would normally block, waiting for a semaphore
to reach a certain value, IPC_NOWAIT makes the call return immediately, returning
a value of -1 and setting errno to EAGAIN;

SEM_UNDO keep track of the changes that this call makes to the value of a semaphore, so that
they can be undone when the calling process terminates. This is useful to prevent
other processes waiting on a semaphore to block forever, should the process that
has the semaphore locked terminate in a critical section.

Upon successful completion, the value 0 is returned; otherwise the value -1 is returned and the
global variable errno is set to indicate the error. On OpenBSD there is also an implementation of
POSIX compliant semaphores which we will not describe here. Listing 12.9 shows a program to
create a group of semaphores.

Listing 12.9: semcreate - creates a semaphore group.
1 /* -*- mode: c-mode; -*- */
2
3 /* File semcreate.c. */
4 #include <stdio.h>
5 #include <stdlib.h>
6 #include <string.h>
7 #include <unistd.h>
8 #include <sys/types.h>
9 #include <sys/sem.h>

10
11 /* semcreate program. */
12 #define FOREVER for (;;)
13

12.4. SHARED MEMORY. 185

14 /* Functions prototypes. */
15 int main(int , char *[]);
16
17 /* Main function. */
18 int main(int argc , char *argv [])
19 {
20 int c, i, oflag , semid , nsems;
21 long int ret = EXIT_FAILURE;
22 key_t key;
23
24 /* */
25 oflag = IPC_CREAT | 0666;
26 while((c = getopt(argc , argv , "e")) != -1) {
27 switch(c) {
28 case ’e’:
29 oflag |= IPC_EXCL;
30 break;
31
32 default:
33 ;
34 break;
35 }
36 }
37 if(optind == (argc - 2)) {
38 nsems = atoi(argv[optind + 1]);
39 printf("Creating␣%d␣semaphore%s", nsems , nsems > 1 ? "s.\n" :

".\n");
40 if((key = ftok(argv[optind], 0)) >= 0) {
41 printf("creating␣key␣from␣path␣%s:␣%d\n", argv[optind],

key);
42 if((semid = semget(key , nsems , oflag)) >= 0)
43 ret = EXIT_SUCCESS;
44 else
45 perror("semget");
46 } else
47 perror("ftok");
48 } else
49 fprintf(stderr , "usage:␣semcreate␣[␣-e␣]␣<pathname >␣<nsems >\n

");
50 exit(ret);
51 }
52
53 /* End of semcreate.c file. */

12.4 Shared Memory.

Shared memory provides a method for two or more programs to share a segment of virtual memory
and use it as if it were actually part of each program. This is useful, possibly in conjunction with
semaphores, for having multiple processes update the same data structures. A shared memory
segment is described by a unique identifier called a shared memory id. The shared memory segment
itself is described by a structure of type shmid_ds, declared in the include file <sys/shm.h>,

186 CHAPTER 12. INTERPROCESS COMMUNICATION.

<sys/types.h> must also be included before:

Listing 12.10: The shmid_ds structure.
struct shmid_ds {

struct ipc_perm shm_perm;
int shm_segsz;
pid_t shm_lpid;
pid_t shm_cpid;
short shm_nattch;
time_t shm_atime;
time_t shm_dtime;
time_t shm_ctime;
void *shm_internal;

};

The members are defined as:

shm_perm operation permissions;

shm_segsz size of segment in bytes;

shm_lpid pid of last shm op;

shm_cpid pid of creator;

shm_nattch number of current attaches;

shm_atime last shmat time;

shm_dtime last shmdt time;

shm_ctime last change by shmctl;

shm_internal sysv stupidity.

12.4.1 The shmget System Call.

The shmget function operates on XSI shared memory, it shall return the shared memory identifier
associated with key. It takes three argument:

• first argument is a key;

• second argument is the size of the shared memory segment in bytes;

• third argument is a mask of bits which are flags.

A shared memory identifier, associated data structure, and shared memory segment of at least size
bytes, see <sys/shm.h>, are created for key if one of the following is true:

• the first argument is equal to IPC_PRIVATE;

• the first argument does not already have a shared memory identifier associated with it and
the third argument anded with IPC_CREAT is non-zero.

Upon creation, the data structure associated with the new shared memory identifier shall be ini-
tialized as follows:

• the values of shm_perm.cuid, shm_perm.uid, shm_perm.cgid and shm_perm.gid are set
to the effective user id and effective group id, respectively, of the calling process;

12.4. SHARED MEMORY. 187

• the low-order nine bits of shm_perm.mode are set to the low-order nine bits of third argument;

• the value of the second argument is set to the value of size;

• the values of shm_lpid, shm_nattch, shm_atime and shm_dtime are set to 0;

• the value of shm_ctime is set to the current time.

When the shared memory segment is created, it shall be initialized with all zero values. Upon suc-
cessful completion, shmget shall return a non-negative integer, namely a shared memory identifier;
otherwise, it shall return -1 and set errno to indicate the error.

12.4.2 The shmctl System Call.

shmctl system call takes three arguments and performs some control operations on the shared
memory area specified by the first argument. Each shared memory segment has a data structure
associated with it, parts of which may be altered by shmctl and parts of which determine the
actions of shmctl. This structure is defined in <sys/shm.h> and it is reported in 12.10. The
ipc_perm structure used inside the shmid_ds structure is defined in <sys/ipc.h> which is first
reported in 12.4. The operation to be performed by shmctl is specified in its second argument and
is one of:

IPC_STAT gather information about the shared memory segment and place it in the structure
pointed to by the third argument;

IPC_SET set the value of the shm_perm.uid, shm_perm.gid and shm_perm.mode fields in the
structure associated with the first argument. The values are taken from the correspond-
ing fields in the structure pointed to by the third argument. This operation can only
be executed by the super-user or a process that has an effective user id equal to either
shm_perm.cuid or shm_perm.uid in the data structure associated with the shared
memory segment;

IPC_RMID mark the shared memory segment specified by first argument for removal when it is
no longer in use by any process. When it is removed, all data associated with it will
be destroyed too. Only the superuser or a process with an effective UID equal to the
shm_perm.cuid or shm_perm.uid values in the data structure associated with the
queue can do this.

The read and write permissions on a shared memory identifier are determined by the shm_perm.mode
field in the same way as is done with files8, but the effective UID can match either the shm_perm.cuid
field or the shm_perm.uid field and the effective GID can match either shm_perm.cgid or
shm_perm.gid. Upon successful completion, the value 0 is returned; otherwise the value -1 is
returned and the global variable errno is set to indicate the error.

12.4.3 The shmat and shmdt System Calls.

shmat takes three arguments and it maps the shared memory segment associated with the shared
memory identifier in the first argument into the address space of the calling process. The address
at which the segment is mapped is determined by the second argument. If it is equal to NULL,
the system will pick an address itself. Otherwise, an attempt is made to map the shared memory
segment at the address specified in the second argument. If SHM_RND is set in the third argument,
the system will round the address down to a multiple of SHMLBA bytes9. A shared memory segment
can be mapped read-only by specifying the SHM_RDONLY flag in the third argument. shmdt takes one

8See chmod(2).
9SHMLBA is defined in <sys/shm.h>.

188 CHAPTER 12. INTERPROCESS COMMUNICATION.

parameter and unmaps the shared memory segment that is currently mapped at the first argument
from the calling process’ address space. This argument must be a value returned by a prior shmat
call. A shared memory segment will remain existent until it is removed by a call to shmctl(2) with
the IPC_RMID command. shmat returns the address at which the shared memory segment has
been mapped into the calling process’ address space when successful, shmdt returns 0 on successful
completion. Otherwise, a value of -1 is returned, and the global variable errno is set to indicate
the error. Listing 12.11 shows a small server program that obtains a shared memory segment and
puts some data into it for a client process to read. It then waits until the first element of the
segment is changed by the client, indicating that the segment has bee read.

Listing 12.11: shm-server - server program to demonstrate shared memory.

1 /* -*- mode: c-mode; -*- */
2
3 /* File shm -server.c. */
4 #include <stdio.h>
5 #include <stdlib.h>
6 #include <string.h>
7 #include <unistd.h>
8 #include <sys/types.h>
9 #include <sys/ipc.h>

10 #include <sys/shm.h>
11
12 /* shm -server program. */
13 #define FOREVER for (;;)
14 #define SHMSZ 32
15
16 /* Functions prototypes. */
17 int main(int , char *[]);
18
19 /* Main function. */
20 int main(int argc , char *argv [])
21 {
22 char c;
23 char *shm , *s;
24 int shmid;
25 long int ret = EXIT_FAILURE;
26 key_t key;
27
28 /*
29 * We’ll name our shared memory segment
30 * "5678".
31 */
32 key = 5678;
33
34 /* Create the segment. */
35 if((shmid = shmget(key , SHMSZ , IPC_CREAT | 0666)) >= 0) {
36
37 /* Now we attach the segment to our data space. */
38 if((shm = shmat(shmid , NULL , 0)) >= 0) {
39
40 /*
41 * Now put some things into the memory for the

12.4. SHARED MEMORY. 189

42 * process to read.
43 */
44 s = shm;
45 for(c = ’a’; c <= ’z’; c++)
46 *s++ = c;
47 *s = ’\0’;
48 printf("Data␣at␣0x%0.8x:␣%s\n", (size_t) shm , (char *) shm)

;
49
50 /*
51 * Finally , we wait until the other process
52 * changes the first character of our memory
53 * to ’*’, indicating that it has read what
54 * we put there.
55 */
56 printf("Waiting␣for␣client␣to␣change␣the␣shared␣memory .\n")

;
57 while(*shm != ’*’)
58 sleep (1);
59 printf("Client␣succesfully␣modified␣shared␣data␣segment:␣%s

\n", shm);
60 ret = EXIT_SUCCESS;
61 } else
62 perror("shmat");
63 } else
64 perror("shmget");
65 exit(ret);
66 }
67
68 /* End of shm -server.c file. */

Listing 12.12 shows the client program that reads the shared memory segment, prints it on the
screen and then changes the first element of the segment so that the server can exit. Before
running this program, the server process must be started in the background.

Listing 12.12: shm-client - client program to demonstrate shared memory.
1 /* -*- mode: c-mode; -*- */
2
3 /* File shm -client.c. */
4 #include <stdio.h>
5 #include <stdlib.h>
6 #include <string.h>
7 #include <unistd.h>
8 #include <sys/types.h>
9 #include <sys/ipc.h>

10 #include <sys/shm.h>
11
12 /* shm -client program. */
13 #define FOREVER for (;;)
14 #define SHMSZ 32
15
16 /* Functions prototypes. */
17 int main(int , char *[]);

190 CHAPTER 12. INTERPROCESS COMMUNICATION.

18
19 /* Main function. */
20 int main(int argc , char *argv [])
21 {
22 char c;
23 char *shm , *s;
24 int shmid;
25 long int ret = EXIT_FAILURE;
26 key_t key;
27
28 /*
29 * We need to get the segment named
30 * "5678" , created by the server.
31 */
32 key = 5678;
33
34 /* Locate the segment. */
35 if((shmid = shmget(key , SHMSZ , 0666)) >= 0) {
36
37 /* Now we attach the segment to our data space. */
38 if((shm = shmat(shmid , NULL , 0)) >= 0) {
39 printf("Server␣data␣at␣0x%0.8x:␣", (size_t) shm);
40
41 /* Now we read what the server put in the memory. */
42 for(s = shm; *s != ’\0’; s++)
43 putchar (*s);
44 putchar(’\n’);
45
46 /*
47 * Finally , change the first character of the
48 * segment to ’*’, indicating we have read
49 * the segment.
50 */
51 *shm = ’*’;
52 ret = EXIT_SUCCESS;
53 } else
54 perror("shmat");
55 } else
56 perror("shmget");
57 exit(ret);
58 }
59
60 /* End of shm -client.c file. */

Chapter 13

Networking.

Addresses.
Translating Hostnames Into Network Numbers.
Obtaining Port Numbers.
Network Byte Order.
Networking System Calls.

OpenBSD provides an extensive facility for interprocess communication between processes running
on different machines. This is done using the Transmission Control Protocol and Internet Protocol,
TCP/IP, as specified by the Defence Advanced Research Project Agency, DARPA, for use on their
international network, the ARPANET. The networking facilities is based on the socket mechanism
and work in much the same way as the interprocess communication facility discussed in Chapter 11,
Important Points.. Rather than using the UNIX domain, however, the networking facilities operate
in the Internet domain.

13.1 Addresses.

In the UNIX domain, the address of a program is specified by using a standard UNIX path name.
In the Internet domain, however, this is not viable for two reasons:

• first, standard path names do not provide any method of specifying which computer a program
is located on;

• second, not all the computers connected to a network will necessarily be running OpenBSD
or another UNIX-like operating system.

The addresses used in the Internet domain consist of two numbers. The first number is a 32-bit
internetwork number of the computer which the program to be accessed reside on. Each machine
on a network, whether it be the global ARPANET or simply a local-area network, has a unique
internetwork number. It should be noted here that although a network number functions as the
name of a machine, it is not the same thing as the hostname of a machine. A hostname is usually
a text string, such as “intrepid.ecn.purdue.edu” or “sri-nic.arpa” and is not easily used as a network
address because it does not give any information about how to access the machine itself. Because
the same host can reside on more than one network, it is possible for a single hostname to be
associated with several network numbers. Each network number specifies to the operating system
how to reach the machine by using a different network path. The second number making up an
Internet domain address is a 16-bit port number. Each networking program on a machine uses a
separate port number, the port number is somewhat similar to the path name used in the UNIX
domain. For example, the ssh program uses port number 22 and the ftp file transfer server uses port

191

192 CHAPTER 13. NETWORKING.

number 211. Thus a program wishing to connect to the file transfer server residing on the machine
with network number 12345 would specify the Internet address (12345, 21). Without using port
numbers, it would be difficult for any machine to run more than one network at a time.

13.2 Translating Hostnames Into Network Numbers.

As mentioned in the previous section, a hostname cannot function as a network address; it must be
converted to a network number. The relationships between hostnames and network numbers are
stored in the text file /etc/hosts. To translate hostnames into network numbers, the gethostbyname
library routine is used. This routine takes a single argument, a character string containing the name
of the host to be looked up. It returns a pointer to a structure of type hostent, as defined in the
include file <netdb.h>:

Listing 13.1: The hostent structure.
s t ruc t ho s t en t {

char ∗h_name ;
char ∗∗ h_a l i a s e s ;
i n t h_addrtype ;
i n t h_length ;
char ∗∗ h_addr_l i s t ;

} ;

#def ine h_addr h_addr_l i s t [0]

The members of this structure are:

h_name official name of the host;

h_aliases a NULL-terminated array of alternate names for the host;

h_addrtype the type of address being returned;

h_length the length, in bytes, of the address;

h_addr_list a NULL-terminated array of network addresses for the host. Host addresses are
returned in network byte order;

h_addr the first address in h_addr_list; this is for backward compatibility.

The h_addr_list element of this structure contains all the network numbers associated with the
hostname. The h_addr “element” is for backward compatibility, but is still often used in programs
that don’t really care which network number they use to access a machine. If the hostname cannot
be found in the database, the constant NULL is returned. Another library routine gethostbyaddr,
exists to look up network numbers and obtain the hostname associated with them. It also returns a
pointer to a structure of type hostent; the h_name field of this structure will contain the hostname.

13.2.1 The gethostbyname and gethostbyaddr Library Routines.

The gethostbyname function return a pointer to an object of type struct hostent describing
an Internet host referenced by the first argument. gethostbyaddr takes three argument. The first
argument is a string containing the Internet address of the host, with length in the second argument
and address family in the third argument. The hostent structure contains either information
obtained from a name server, broken-out fields from a line in /etc/hosts or database entries supplied

1See /etc/services for the list of ports and their associated service/program.

13.2. TRANSLATING HOSTNAMES INTO NETWORK NUMBERS. 193

by the yp(8) system. resolv.conf (5) describes how the particular database is chosen. The function
gethostbyname will search for the named host in the current domain and its parents using the
search lookup semantics detailed in resolv.conf (5) and hostname(7). The gethostbyaddr function
will search for the specified address of length len in the address family af. The only address family
supported is AF_INET. Listing 13.2 shows a program retrieving host informations from the hostname
databases.

Listing 13.2: hostent - program to demonstrate the usage of host database.

1 /* -*- mode: c-mode; -*- */
2
3 /* File hostent.c. */
4 #include <stdio.h>
5 #include <stdlib.h>
6 #include <string.h>
7 #include <errno.h>
8 #include <unistd.h>
9 #include <netdb.h>

10
11 /* hostent program. */
12 #define FOREVER for (;;)
13
14 /* Function prototypes. */
15 int main(int , char *[]);
16
17 /* Main function. */
18 int main(int argc , char *argv [])
19 {
20 int i;
21 char **alias;
22 long int ret = EXIT_FAILURE;
23 struct hostent *host;
24
25 /* Check the arguments. */
26 if(argc == 2) {
27
28 /* Get the specified host from the database. */
29 if((host = gethostbyname(argv[1])) != NULL) {
30 printf("official␣host␣name:␣%s\n", host -> h_name);
31 printf("alias␣list:␣");
32 alias = host -> h_aliases;
33 while(* alias)
34 printf("%s␣", *alias ++);
35 printf("\n");
36 printf("address␣type:␣%d\n", host -> h_addrtype);
37 printf("addresses:␣");
38 for(i = 0; i < host -> h_length; i++)
39 printf("0x%0.8x␣", host -> h_addr_list[i]);
40 printf("\n");
41 ret = EXIT_SUCCESS;
42 } else
43 fprintf(stderr , "Host␣%s␣not␣found␣in␣hosts␣database .\n",

argv[1]);

194 CHAPTER 13. NETWORKING.

44 } else
45 fprintf(stderr , "Usage␣hostent␣<hostname >\n");
46 exit(ret);
47 }
48
49 /* End of hostent.c file. */

13.3 Obtaining Port Numbers.

Most network services, file transfer, secure login, etc., programs usually use standard “well-known”
port numbers – that is, port numbers which are the same everywhere and are set forth in the
specifications of the protocols which use them. This enables a client program on one machines to
contact a server program on any other machine without having to guess at what port the server
resides2. Port numbers for well-known services are listed, along with their service names, in the text
file /etc/services. The fields of one line of this file are contained in the servent structure defined
in <netdb.h>:

Listing 13.3: The servent structure.
struct servent {

char *s_name;
char ** s_aliases;
int s_port;
char *s_proto;

};

The members of this structure are:

s_name the official name of the service;

s_aliases a null-terminated list of alternate names for the service;

s_port the port number at which the service resides. Port numbers are returned in network
byte order;

s_proto the name of the protocol to use when contacting the service.

To get the port and service informations we use two library routine: getservbyname and getservbyport.

13.3.1 The getservbyname and getservbyport Library Calls.

The getservbyname and getservbyport functions each return a pointer to an object with the
servent structure, described in 13.3, containing the broken-out fields of a line in the network services
database, /etc/services. The getservbyname and getservbyport functions sequentially search
from the beginning of the file until a matching protocol name or port number, specified in network
byte order, is found, or until EOF is encountered. If a non-null protocol name is also supplied,
searches must also match the protocol. The structure must be zero-filled before it is used and
should be considered opaque for the sake of portability. The getservbyport and getservbyname
functions return a pointer to a servent structure on success or a NULL pointer if end-of-file is reached
or an error occurs. getservbyname takes two argument: first argument is a string containing the
service name, the second argument the protocol name. getservbyport takes two arguments too:
the first argument is the port number, the second argument is the protocol name. Listing 13.4
shows the usage for service database querying.

2Sometimes ports are choosen randomly between client and server for security purpose.

13.3. OBTAINING PORT NUMBERS. 195

Listing 13.4: servent - program to demonstrate the usage of serfvices database.

1 /* -*- mode: c-mode; -*- */
2
3 /* File servent.c. */
4 #include <stdio.h>
5 #include <stdlib.h>
6 #include <string.h>
7 #include <errno.h>
8 #include <unistd.h>
9 #include <netdb.h>

10
11 /* servent program. */
12 #define FOREVER for (;;)
13
14 /* Function prototypes. */
15 int main(int , char *[]);
16
17 /* Main function. */
18 int main(int argc , char *argv [])
19 {
20 int i;
21 char **alias , *servicename , *protocolname;
22 long int ret = EXIT_FAILURE;
23 struct servent *service;
24
25 /* Check the arguments. */
26 if(argc < 2)
27 fprintf(stderr , "Usage␣servent␣<service␣name >␣<protocol␣name

>\n");
28 else {
29 if (argc == 3) {
30 servicename = argv[1];
31 protocolname = argv[2];
32 } else if(argc == 2) {
33 servicename = argv[1];
34 protocolname = argv[2];
35 }
36 if((service = getservbyname(servicename , protocolname)) !=

NULL) {
37 printf("official␣service␣name:␣%s\n", service -> s_name);
38 printf("alias␣list:␣");
39 alias = service -> s_aliases;
40 while(* alias)
41 printf("%s␣", *alias ++);
42 printf("\n");
43 printf("port:␣0x%0.4x\n", htons(service -> s_port));
44 printf("protocol:␣%s\n", service -> s_proto);
45 ret = EXIT_SUCCESS;
46 } else
47 fprintf(stderr , "Service␣%s␣with␣protocol␣%s␣not␣found␣in␣

services␣database .\n", argv[1], argv[2]);
48 }

196 CHAPTER 13. NETWORKING.

49 exit(ret);
50 }
51
52 /* End of hostent.c file. */

13.4 Network Byte Order.

Before discussing the system calls used for networking, it is necessary to discuss the byte order of
numbers used by the networking software. The method in which integers are stored in computers
is called endiannes and varies from vendor to vendor. Some computers store integers with the
most significant bit in the lowest address – and are called big endian, while others store them with
the most significant bit in the highest address – and they are called little endian. Because great
chaos would result if two machines using different byte orders were try to communicate directly,
the network software requires that all data be exchanged in network byte order. In order to convert
integers to network byte order, two library routines, htons and htonl, are provided. These convert
short and long integers, respectively, from host type order to network byte order. Likewise, two
other routines htohs and ntohl, exist to convert short and long integers from network byte order
to host byte order. The gethostbyname and getservbyname routines return all data in their
structures in network byte order.

13.5 Networking System Calls.

The system calls used to perform networking tasks are the same system calls used for interprocess
communication, described in Chapter 11, Important Points.. There are a few differences in the
parameters passed to these system calls, however:

• the first parameter to socket is now given as AF_INET, which specifies the Internet domain.
The second parameter may still be either SOCK_STREAM or SOCK_DGRAM;

• the type of sackaddr structure used with accept, bind, connect, sendto and recvfrom
is now of type sockaddr_in and is declared in the include file <netinet/in.h>:

Listing 13.5: The sockaddr structure.

struct sockaddr {
__uint8_t sa_len;
sa_family_t sa_family;
char sa_data[14];

};

Where:

sa_len total length;

sa_family address family;

sa_data actually longer; address value.

• the sin_port element of the structure sockaddr_in should contain the port number, in
network byte order, to be connect to. The sin_addr element should contain the network
number, in network byte order, of the machine the port resides on;

• two new system calls, gethostname and sethostname, can be used to obtain and set the
name of the host the program is running on respectively.

13.5. NETWORKING SYSTEM CALLS. 197

The gethostname function returns the standard hostname for the current machine, as previously
set by sethostname. The second argument specifies the size of the array pointed by the first
argument. If insufficient space is provided, the returned name is truncated. The returned name is
always null-terminated. If no space is provided, an error is returned. sethostname sets the name
of the host machine to be the first argument, which has length specified in the second argument.
This call is restricted to the super-user and is normally used only when the system is bootstrapped.
If the call succeeds, a value of 0 is returned. If the call fails, a value of -1 is returned and an error
code is placed in the global variable errno. Listing 13.6 and 13.7 show a small server and client
program, respectively. These example programs are from the Chapter 11, Important Points. in
listings 12.1 and 12.2.

Listing 13.6: inet-client - a client to demonstrate internet domain sockets.

1 /* -*- mode: c-mode; -*- */
2
3 /* File inet -client.c */
4 #include <stdio.h>
5 #include <stdlib.h>
6 #include <string.h>
7 #include <stdint.h>
8 #include <stddef.h>
9 #include <inttypes.h>

10 #include <unistd.h>
11 #include <sys/types.h>
12 #include <sys/socket.h>
13 #include <netinet/in.h>
14 #include <arpa/inet.h>
15
16 /* inet -client program. */
17 #define SERVER_PORT 10240
18 #define FOREVER for (;;)
19
20 /* Functions prototypes. */
21 long int client(struct sockaddr_in *);
22 int main(int , char *[]);
23
24 /* Main function. */
25 int main(int argc , char *argv [])
26 {
27 int res;
28 long int ret;
29 struct sockaddr_in servaddr;
30
31 /* */
32 servaddr.sin_family = AF_INET;
33 servaddr.sin_port = htons(SERVER_PORT);
34 res = inet_pton(AF_INET , "127.0.0.1", &servaddr.sin_addr);
35 ret = client (& servaddr);
36 exit(ret);
37 }
38
39 /*
40 * client -- the client function.

198 CHAPTER 13. NETWORKING.

41 */
42 long int client(struct sockaddr_in *sa)
43 {
44 int sockfd;
45 long int ret = EXIT_FAILURE;
46 char *buff[BUFSIZ];
47
48 /* */
49 if(sa) {
50 if((sockfd = socket(AF_INET , SOCK_STREAM , 0)) >= 0) {
51 printf("Created␣socket:␣%d\n", sockfd);
52 if(connect(sockfd , (struct sockaddr *) sa, sizeof(struct

sockaddr_in)) >= 0) {
53 printf("Connected␣to␣0x%0.8x,␣port␣0x%0.4x\n", sa ->

sin_addr , ntohs(sa -> sin_port));
54 if(recv(sockfd , (void *) buff , BUFSIZ , MSG_WAITALL) >= 0)

{
55 printf("Received␣data␣from␣server:␣%s\n", buff);
56 ret = EXIT_SUCCESS;
57 } else
58 perror("recv");
59 } else
60 perror("connect");
61 close(sockfd);
62 } else
63 perror("socket");
64 } else
65 fprintf(stderr , "NULL␣address␣passed .\n");
66 return ret;
67 }
68
69 /* End of inet -client.c file. */

Listing 13.7: inet-server - a server to demonstrate internet domain sockets.
1 /* -*- mode: c-mode; -*- */
2
3 /* File inet -server.c */
4 #include <stdio.h>
5 #include <stdlib.h>
6 #include <string.h>
7 #include <stdint.h>
8 #include <stddef.h>
9 #include <inttypes.h>

10 #include <unistd.h>
11 #include <time.h>
12 #include <errno.h>
13 #include <sys/time.h>
14 #include <sys/types.h>
15 #include <sys/socket.h>
16 #include <netinet/in.h>
17 #include <arpa/inet.h>
18

13.5. NETWORKING SYSTEM CALLS. 199

19 /* inet -server program. */
20 #define SERVER_PORT 10240
21 #define FOREVER for (;;)
22
23 /* Functions prototypes. */
24 long int server(struct sockaddr_in *);
25 int main(int , char *[]);
26
27 /* Main function. */
28 int main(int argc , char *argv [])
29 {
30 long int ret;
31 struct sockaddr_in servaddr;
32
33 /* clear the address structures in memory. */
34 bzero(&servaddr , sizeof(struct sockaddr_in));
35
36 /* setup structures. */
37 servaddr.sin_family = AF_INET;
38 servaddr.sin_addr.s_addr = htonl(INADDR_ANY);
39 servaddr.sin_port = htons(SERVER_PORT);
40 ret = server (& servaddr);
41 exit(ret);
42 }
43
44 /*
45 * client -- the client function.
46 */
47 long int server(struct sockaddr_in *sa)
48 {
49 char *buff;
50 int listenfd , connfd;
51 long int ret = EXIT_FAILURE;
52 struct timeval now;
53 struct sockaddr_in cliaddr;
54 socklen_t cliaddrlen = sizeof(struct sockaddr_in);
55 pid_t pid;
56
57 /* */
58 if(sa) {
59 bzero(&cliaddr , sizeof(struct sockaddr_in));
60 if((listenfd = socket(AF_INET , SOCK_STREAM , 0)) >= 0) {
61 if(bind(listenfd , \
62 (struct sockaddr *) sa , \
63 sizeof(struct sockaddr_in)) >= 0) {
64 printf("Waiting␣to␣accept␣a␣connection ...\n");
65 if(listen(listenfd , 0) >= 0) {
66 FOREVER {
67 cliaddrlen = sizeof(cliaddr);
68 if((connfd = accept(listenfd , \
69 (struct sockaddr *) &cliaddr , \
70 &cliaddrlen)) >= 0) {

200 CHAPTER 13. NETWORKING.

71 printf("Accepted␣connection␣from␣0x%0.8x,␣port␣0x
%0.4x\n", \

72 cliaddr.sin_addr , \
73 ntohs(cliaddr.sin_port));
74 if((pid = fork()) == 0) {
75 close(listenfd);
76 if(gettimeofday (&now , NULL) >= 0) {
77 buff = ctime(&now.tv_sec);
78 if(buff) {
79 if(send(connfd , \
80 (void *) buff , \
81 strnlen(buff , BUFSIZ), 0) >= 0) {
82 ret = EXIT_SUCCESS;
83 break;
84 } else {
85 perror("send");
86 break;
87 }
88 } else {
89 fprintf(stderr , "empty␣time␣string");
90 break;
91 }
92 } else {
93 perror("gettimeofday");
94 break;
95 }
96 }
97 close(connfd);
98 } else {
99 perror("accept");

100 break;
101 }
102 }
103 } else
104 perror("listen");
105 } else
106 perror("bind");
107 } else
108 perror("socket");
109 } else
110 fprintf(stderr , "NULL␣address␣passed .\n");
111 return ret;
112 }
113
114 /* End of inet -server.c file. */

Chapter 14

The File System.

Disk Terminology.
The OpenBSD Enhanced Fast File System.

OpenBSD offers the possibility to deal with different file system types to ease data exchange with
other operating systems. On version 7.5 we can handle:

• ext2, ext3, ext4 linux file systems;

• Microsoft MS-DOS, FAT and NTFS file systems;

• ISO9660 file system;

• NFS file system;

• UDF file system;

• UNIX Fast File System and UNIX Enhanced Fast File System which is the default choice for
system disks.

A file system is a way to organize data on a storage media such like disks, tape or a DVD optical
disk in a way that it is possible to manipulate easily those data and more important to store them
for an undefined amount of time.

14.1 Disk Terminology.

A disk is a device than can store data by means of write operations and then the stored data can be
retrieved by means of read operations. A disk is usually connected to the computer using electronic
interfaces and it is configured and managed by a disk driver software in the operating system. To
store and manage data a disk could use different technologies. The most convenient and used kind
of disks are:

• mechanical;

• solid state;

• optical.

whatever technology is involved, the disk is composed of two main parts: a media for the physical
storage of data and a controlling electronics which operates on the media part to perform certain
operations such as write and read. The first media technology involved in the storage of data was
the mechanical one which survived until now. A mechanical disk is composed roughly of a number

201

202 CHAPTER 14. THE FILE SYSTEM.

of coaxial rigid disc plates whose surface are made with a magnetic material1 and are flown by
heads. Those disks are spinned by a motor which can reach speeds from 3000 rpm to 10000 rpm
depending on the disk type. Modern disk drive unit has got one disk and two heads, one per side.
The heads are connected rigidly by a rod moved by an actuator by means of an arm so they can
swing spanning on the two disk surfaces and thus assume a precise position. If one head reach
a position on the surface of the disk to a precise distance from the rotational center, as the disk
rotates under the head, it describes a circle which is called a track. The tracks on the disk which are
identified by the same position of the heads on the respective surfaces and thus are all at the same
distance from the center, form a cylinder. Since the tracks on the surface of a disk are concentric,
so are the corresponding cylinders. Unlike the vinil disks, an hard disk have several tracks per
surface that can be accessed just moving the head assembly. A part of a track with a fixed length
is called a sector. Heads, sectors, tracks and cylinders are referred as the disk geometry. Nowadays
mechanical disks are still used for data storage but they are often replaced by static mass storage
memories, the ssd. Those devices are totally static they are more reliable and faster compared to
same size mechanical counterpart.

Mechanical Disk Solid State Disk USB pendrive
Disk

Interface SATA 6 GB/s 4 port PCIe G4
NVMe 2.0 USB3.1

Maximum
Transfer rate in
MB/s (R/W)

190 7400/6400 300/200

Capacity in TB 2 2.048 2
Bytes per sectors

in B 4096 - -

Weight in g 630 51 -
MTBF in h - 1.8 · 106 -
Power in W 2.5 5.7 -

Table 14.1: Comparison between mass storage devices.

Optical disks, used for removable media devices, use a technology based on the laser. Data is
encoded on a surface of a disk using non reflective or reflective spots. The reading/writing head
provide a laser LED to create non reflective spots and a sensor to detect reflected laser light. Unlike
the mechanical disk drive which uses the magnetization of a surface to read and write data.

14.2 The OpenBSD Enhanced Fast File System.

The Enhanced Fast Filesystem (FFS2) is the new file system by default on nearly all architectures,
since OpenBSD 6.7. Some characteristics are:

• FFS2 is faster than its predecessor FFS when creating the file system, as well as analyzing it
with fsck(8);

• FFS2 uses 64-bit timestamps and block numbers; so it is not subject to the Y2038 bug;

• FFS2 supports very large partitions (>= 1TB, since 4.2).

1On both sides.

14.2. THE OPENBSD ENHANCED FAST FILE SYSTEM. 203

14.2.1 The disk label.

Each disk or disk pack on a system may contain a disk label which provides detailed information
about the geometry of the disk and the partitions into which the disk is divided. The disk label
structure is defined in <sys/disklabel.h>:

#define NDDATA 5
#define NSPARE 4
#define MAXMAXPARTITIONS 22

struct disklabel {
u_int32_t d_magic;
u_int16_t d_type;
u_int16_t d_subtype;
char d_typename[16];
char d_packname[16];
u_int32_t d_secsize;
u_int32_t d_nsectors;
u_int32_t d_ntracks;
u_int32_t d_ncylinders;
u_int32_t d_secpercyl;
u_int32_t d_secperunit;
u_char d_uid[8];
u_int32_t d_acylinders;
u_int16_t d_bstarth;
u_int16_t d_bendh;
u_int32_t d_bstart;
u_int32_t d_bend;
u_int32_t d_flags;
u_int32_t d_spare4[NDDATA];
u_int16_t d_secperunith;
u_int16_t d_version;
u_int32_t d_spare[NSPARE];
u_int32_t d_magic2;
u_int16_t d_checksum;
u_int16_t d_npartitions;
u_int32_t d_spare2;
u_int32_t d_spare3;
struct partition {

u_int32_t p_size;
u_int32_t p_offset;
u_int16_t p_offseth;
u_int16_t p_sizeh;
u_int8_t p_fstype;
u_int8_t p_fragblock;
u_int16_t p_cpg;

} d_partitions[MAXPARTITIONS];
};

d_magic the magic number;

d_type drive type:

• DTYPE_SMD — SMD, XSMD; VAX hp/up;

204 CHAPTER 14. THE FILE SYSTEM.

• DTYPE_MSCP — MSCP;

• DTYPE_DEC — other DEC (rk, rl);

• DTYPE_SCSI — SCSI;

• DTYPE_ESDI — ESDI interface;

• DTYPE_ST506 — ST506 etc.;

• DTYPE_HPIB — CS/80 on HP-IB;

• DTYPE_HPFL — HP Fiber-link;

• DTYPE_FLOPPY — floppy;

• DTYPE_CCD — was: concatenated disk device;

• DTYPE_VND — vnode pseudo-disk;

• DTYPE_ATAPI — ATAPI;

• DTYPE_RAID — was: RAIDframe;

• DTYPE_RDROOT — ram disk root;

d_subtype controller/d_type specific;

d_typename type name, e.g. "eagle";

d_packname pack identifier;

d_secsize number of bytes per sector;

d_nsectors number of data sectors per track;

d_ntracks number of tracks per cylinder;

d_ncylinders number of data cylinders per unit;

d_secpercyl number of data sectors per cylinder;

d_secperunit number of data sectors (low part);

d_uid unique label identifier;

d_acylinders number of alt. cylinders per unit;

d_bstarth start of useable region (high part);

d_bendh size of useable region (high part);

d_bstart start of useable region;

d_bend end of useable region;

d_flags generic flags;

d_spare4 structure pad data;

d_secperunith number of data sectors (high part);

d_version version number (1=48 bit addressing);

d_spare structure pad data, reserved for future use;

d_magic2 the magic number (again);

14.2. THE OPENBSD ENHANCED FAST FILE SYSTEM. 205

d_checksum xor of data incl. partitions;

d_npartitions number of partitions in following;

d_spare2 spare member;

d_spare3 spare member;

d_partitions the partition table, array of a structure with the following members:

• p_size — number of sectors (low part);

• p_offset — starting sector (low part);

• p_offseth — starting sector (high part);

• p_sizeh — number of sectors (high part);

• p_fstype — filesystem type, see below;

• p_fragblock — encoded filesystem frag/block;

• p_cpg — UFS: FS cylinders per group.

It should be initialized when the disk is formatted, and may be changed later with the disklabel(8)
program. This information is used by the system disk driver and by the bootstrap program to
determine how to program the drive and where to find the file systems on the disk partitions.
Additional information is used by the file system in order to use the disk most efficiently and
to locate important information. The description of each partition contains an identifier for the
partition type: standard file system, swap area, etc.. The file system updates the in-core copy of
the label if it contains incomplete information about the file system itself. The label is located
in sector number LABELSECTOR of the drive, usually sector 0 where it may be found without any
information about the disk geometry. It is at an offset LABELOFFSET from the beginning of the
sector, to allow room for the initial bootstrap. A copy of the in-core label for a disk can be obtained
with the DIOCGDINFO ioctl; this works with a file descriptor for a block or character, raw, device
for any partition of the disk. The in-core copy of the label is set by the DIOCSDINFO ioctl. The
offset of a partition cannot generally be changed while it is open, nor can it be made smaller while
it is open. One exception is that any change is allowed if no label was found on the disk and the
driver was able to construct only a skeletal label without partition information. The DIOCWDINFO
ioctl operation sets the in-core label and then updates the on-disk label; there must be an existing
label on the disk for this operation to succeed. Thus, the initial label for a disk or disk pack must
be installed by writing to the raw disk. The DIOCGPDINFO ioctl operation gets the default label
for a disk. This simulates the case where there is no physical label on the disk itself and can be
used to see the label the kernel would construct in that case. The DIOCRLDINFO ioctl operation
causes the kernel to update its copy of the label based on the physical label on the disk. It can
be used when the on-disk version of the label was changed directly or, if there is no physical label,
to update the kernel’s skeletal label if some variable affecting label generation has changed, e.g.
the fdisk partition table. All of these operations are normally done using disklabel(8). Note that
when a disk has no real BSD disk label the kernel creates a default label so that the disk can be
used. This default label will include other partitions found on the disk if they are supported on your
architecture. For example, on systems that support fdisk(8) partitions the default label will also
include DOS and Linux partitions. However, these entries are not dynamic, they are fixed at the
time disklabel(8) is run. That means that subsequent changes that affect non-OpenBSD partitions
will not be present in the default label, though you may update them by hand.

Listing 14.1: disklabel - a program to retrieve disk label.
1 /* -*- mode: c-mode; -*- */
2

206 CHAPTER 14. THE FILE SYSTEM.

3 /* File disklabel.c. */
4 #include <stdio.h>
5 #include <stdlib.h>
6 #include <string.h>
7 #include <unistd.h>
8 #include <fcntl.h>
9 #include <errno.h>

10 #include <sys/types.h>
11 #include <sys/ioctl.h>
12 #include <sys/dkio.h>
13 #include <sys/disklabel.h>
14
15 /* program disklabel. */
16 #define FOREVER for (;;)
17
18 /* Functions prototypes. */
19 int main(int , char *[]);
20
21 /* Main function. */
22 int main(int argc , char *argv [])
23 {
24 int diskfd;
25 long int ret;
26 struct disklabel label;
27
28 /* Check arguments. */
29 if(argc == 2) {
30 if(pledge("stdio␣disklabel␣unveil␣rpath␣wpath", NULL) >= 0) {
31 if(unveil(argv[1], "rw") >= 0) {
32 if((diskfd = open(argv[1], O_RDWR)) >= 0) {
33 if(ioctl(diskfd , DIOCGPDINFO , &label) >= 0) {
34 printf("magic␣number:␣0x%0.8x\n", label.d_magic);
35 printf("drive␣type:␣0x%0.4x\n", label.d_type);
36 printf("drive␣subtype:␣0x%0.4x\n", label.d_subtype);
37 printf("type␣name:␣%s\n", label.d_typename);
38 printf("pack␣name:␣%s\n", label.d_packname);
39 printf("bytes␣per␣sector:␣0x%0.8x\n", label.d_secsize

);
40 printf("sectors␣per␣track:␣0x%0.8x\n", label.

d_nsectors);
41 printf("tracks␣per␣cylinder:␣0x%0.8x\n", label.

d_ntracks);
42 printf("data␣cylinders␣per␣unit:␣0x%0.8x\n", label.

d_ncylinders);
43 printf("data␣sectors␣per␣cylinder:␣0x%0.8x\n", label.

d_secpercyl);
44 printf("data␣sectors␣per␣unit:␣0x%0.8x\n", label.

d_secperunit);
45 ret = EXIT_SUCCESS;
46 } else
47 perror("ioctl");
48 close(diskfd);

14.2. THE OPENBSD ENHANCED FAST FILE SYSTEM. 207

49 } else
50 perror("open");
51 } else
52 perror("unveil");
53 } else
54 perror("pledge");
55 } else
56 fprintf(stderr , "usage:␣disklabel␣<device >\n");
57 exit(ret);
58 }
59
60 /* End of disklabel.c file. */

In the listing 14.1 we used some new system calls: unveil and pledge. The latter, pledge, allows
you to limit a program’s access to system calls very easily. This is a huge improvement in security,
for example: even if a binary is compromised, its chances to misbehave are greatly reduced. The
usage is very simple:

int main(int argc , char *argv [])
{

...
if(pledge("stdio␣rpath", NULL) == -1)

err(1, "pledge");
...

}

The first call to unveil that specifies a path removes visibility of the entire file system from all
other file system-related system calls, such as open(2), chmod(2) and rename(2), except for the
specified path and permissions. The unveil system call remains capable of traversing to any path
in the file system, so additional calls can set permissions at other points in the file system hierarchy.
After establishing a collection of path and permissions rules, future calls to unveil can be disabled
by passing two NULL arguments. Alternatively, pledge(2) may be used to remove the unveil
promise. In listing 14.2 we showed a program to retrieve, from disklabel, the partitions information:

Listing 14.2: disklabel2 - a program to retrieve partitions information.
1 /* -*- mode: c-mode; -*- */
2
3 /* File disklabel2.c. */
4 #include <stdio.h>
5 #include <stdlib.h>
6 #include <string.h>
7 #include <unistd.h>
8 #include <fcntl.h>
9 #include <errno.h>

10 #include <sys/types.h>
11 #include <sys/ioctl.h>
12 #include <sys/dkio.h>
13 #include <sys/disklabel.h>
14
15 /* program disklabel2. */
16 #define FOREVER for (;;)
17
18 /* Functions prototypes. */
19 int main(int , char *[]);

208 CHAPTER 14. THE FILE SYSTEM.

20
21 /* Main function. */
22 int main(int argc , char *argv [])
23 {
24 int i, diskfd;
25 long int ret;
26 struct disklabel label;
27
28 /* Check arguments. */
29 if(argc == 2) {
30 if(pledge("stdio␣disklabel␣unveil␣rpath␣wpath", NULL) >= 0) {
31 if(unveil(argv[1], "rw") >= 0) {
32 if((diskfd = open(argv[1], O_RDWR)) >= 0) {
33 if(ioctl(diskfd , DIOCGDINFO , &label) >= 0) {
34 for(i = 0; i < label.d_npartitions; i++) {
35 printf("\npartion␣#%d\n", i);
36 printf("partition␣number␣of␣sectors:␣%u\n", (off_t)

label.d_partitions[i]. p_size | ((off_t)
label.d_partitions[i]. p_sizeh << 32));

37 printf("partition␣starting␣sector:␣%u\n", (off_t)
label.d_partitions[i]. p_offset | ((off_t)
label.d_partitions[i]. p_offseth << 32));

38 printf("partition␣filesystem␣type:␣%d\n", label
.d_partitions[i]. p_fstype);

39 printf("partition␣encoded␣filesystem␣frag/block:␣%d
\n", label.d_partitions[i]. p_fragblock);

40 printf("partition␣cylinders␣per␣group:␣%d\n",
label.d_partitions[i]. p_cpg);

41 }
42 ret = EXIT_SUCCESS;
43 } else
44 perror("ioctl");
45 close(diskfd);
46 } else
47 perror("open");
48 } else
49 perror("unveil");
50 } else
51 perror("pledge");
52 } else
53 fprintf(stderr , "usage:␣disklabel␣<device >\n");
54 exit(ret);
55 }
56
57 /* End of disklabel2.c file. */

14.2.2 The file system.

The files <ufs/ffs/fs.h> and <ufs/ufs/inode.h> declare several structures and define variables
and macros which are used to create and manage the underlying format of file system objects on
random access devices such as disks. The block size and number of blocks are defining parameters of
the file system. Sectors beginning at BBLOCK and continuing for BBSIZE are used for a disklabel and

14.2. THE OPENBSD ENHANCED FAST FILE SYSTEM. 209

for some hardware primary and secondary bootstrapping programs. The actual file system begins
at sector SBLOCK with the super-block that is of size SBSIZE. The following structure describes the
super-block and is from the file <ufs/ffs/fs.h>:

Listing 14.3: The fs structure.

#define FS_MAGIC 0x011954
#define MAXMNTLEN 468
#define MAXVOLLEN 32
#define NOCSPTRS ((128 / sizeof(void *)) - 4)
#define FSMAXSNAP 20

struct fs {
int32_t fs_firstfield;
int32_t fs_unused_1;
int32_t fs_sblkno;
int32_t fs_cblkno;
int32_t fs_iblkno;
int32_t fs_dblkno;
int32_t fs_cgoffset;
int32_t fs_cgmask;
int32_t fs_ffs1_time;
int32_t fs_ffs1_size;
int32_t fs_ffs1_dsize;
int32_t fs_ncg;
int32_t fs_bsize;
int32_t fs_fsize;
int32_t fs_frag;
int32_t fs_minfree;
int32_t fs_rotdelay;
int32_t fs_rps;
int32_t fs_bmask;
int32_t fs_fmask;
int32_t fs_bshift;
int32_t fs_fshift;
int32_t fs_maxcontig;
int32_t fs_maxbpg;
int32_t fs_fragshift;
int32_t fs_fsbtodb;
int32_t fs_sbsize;
int32_t fs_csmask;
int32_t fs_csshift;
int32_t fs_nindir;
int32_t fs_inopb;
int32_t fs_nspf;
int32_t fs_optim;
int32_t fs_npsect;
int32_t fs_interleave;
int32_t fs_trackskew;
int32_t fs_id[2];
int32_t fs_ffs1_csaddr;
int32_t fs_cssize;
int32_t fs_cgsize;

210 CHAPTER 14. THE FILE SYSTEM.

int32_t fs_ntrak;
int32_t fs_nsect;
int32_t fs_spc;
int32_t fs_ncyl;
int32_t fs_cpg;
int32_t fs_ipg;
int32_t fs_fpg;
struct csum fs_ffs1_cstotal;
int8_t fs_fmod;
int8_t fs_clean;
int8_t fs_ronly;
int8_t fs_ffs1_flags;
u_char fs_fsmnt[MAXMNTLEN];
u_char fs_volname[MAXVOLLEN];
u_int64_t fs_swuid;
int32_t fs_pad;
int32_t fs_cgrotor;
void *fs_ocsp[NOCSPTRS];
u_int8_t *fs_contigdirs;
struct csum *fs_csp;
int32_t *fs_maxcluster;
u_char *fs_active;
int32_t fs_cpc;
int32_t fs_maxbsize;
int64_t fs_spareconf64[17];
int64_t fs_sblockloc;
struct csum_total fs_cstotal;
int64_t fs_time;
int64_t fs_size;
int64_t fs_dsize;
int64_t fs_csaddr;
int64_t fs_pendingblocks;
int32_t fs_pendinginodes;
int32_t fs_snapinum[FSMAXSNAP];
int32_t fs_avgfilesize;
int32_t fs_avgfpdir;
int32_t fs_sparecon[26];
u_int32_t fs_flags;
int32_t fs_fscktime;
int32_t fs_contigsumsize;
int32_t fs_maxsymlinklen;
int32_t fs_inodefmt;
u_int64_t fs_maxfilesize;
int64_t fs_qbmask;
int64_t fs_qfmask;
int32_t fs_state;
int32_t fs_postblformat;
int32_t fs_nrpos;
int32_t fs_postbloff;
int32_t fs_rotbloff;
int32_t fs_magic;
u_int8_t fs_space[1];

14.2. THE OPENBSD ENHANCED FAST FILE SYSTEM. 211

};

The members are:

fs_firstfield historic file system linked list, used for incore super blocks;

fs_unused_1 unused member;

fs_sblkno address of super-block / frags;

fs_cblkno offset of cylinder-block / frags;

fs_iblkno offset of inode-blocks / frags;

fs_dblkno offset of first data / frags;

fs_cgoffset cylinder group offset in cylinder;

fs_cgmask used to calc mod fs_ntrak;

fs_ffs1_time last time written;

fs_ffs1_size number of blocks in fs / frags;

fs_ffs1_dsize number of data blocks in fs;

fs_ncg number of cylinder groups;

fs_bsize size of basic blocks / bytes;

fs_fsize size of frag blocks / bytes;

fs_frag number of frags in a block in fs;

fs_minfree minimum percentage of free blocks;

fs_rotdelay number of ms for optimal next block;

fs_rps disk revolutions per second;

fs_bmask “blkoff” calc of blk offsets;

fs_fmask “fragoff” calc of frag offsets;

fs_bshift “lblkno” calc of logical blkno;

fs_fshift “numfrags” calc number of frags;

fs_maxcontig maximum number of contiguous blocks;

fs_maxbpg maximum number of blocks per cylinder group;

fs_fragshift block to frag shift;

fs_fsbtodb fsbtodb and dbtofsb shift constant;

fs_sbsize actual size of super block;

fs_csmask csum block offset (now unused);

fs_csshift csum block number (now unused);

fs_nindir value of NINDIR;

212 CHAPTER 14. THE FILE SYSTEM.

fs_inopb i-nodes per file system block;

fs_nspf DEV_BSIZE sectors per frag;

fs_optim optimization preference;

fs_npsect DEV_BSIZE sectors/track + spares;

fs_interleave DEV_BSIZE sector interleave;

fs_trackskew sector 0 skew, per track;

fs_id unique filesystem id;

fs_ffs1_csaddr block address of cylinder groyup summary area;

fs_cssize cylinder group summary area size / bytes;

fs_cgsize cylinder group block size / bytes;

fs_ntrak tracks per cylinder;

fs_nsect DEV_BSIZE sectors per track;

fs_spc DEV_BSIZE sectors per cylinder;

fs_ncyl cylinders in file system;

fs_cpg cylinders per group;

fs_ipg inodes per group;

fs_fpg blocks per group * fs_frag;

fs_ffs1_cstotal cylinder summary information;

fs_fmod super-block modified flag;

fs_clean file system is clean flag;

fs_ronly mounted read-only flag;

fs_ffs1_flags see FS_ below;

fs_fsmnt name mounted on;

fs_volname volume name;

fs_swuid system-wide uid;

fs_pad due to alignment of fs_swuid;

fs_cgrotor last cg searched;

fs_ocsp padding; was list of fs_cs bufs;

fs_contigdirs number of contiguously allocated directories;

fs_csp cg summary info buffer for fs_cs;

fs_maxcluster maximum cluster in each cylinder group;

fs_active reserved for snapshots;

14.2. THE OPENBSD ENHANCED FAST FILE SYSTEM. 213

fs_cpc cylinder per cycle in postbl;

fs_maxbsize maximum blocking factor permitted;

fs_spareconf64 old rotation block list head;

fs_sblockloc offset of standard super block;

fs_cstotal cylinder summary information;

fs_time time last written;

fs_size number of blocks in fs;

fs_dsize number of data blocks in fs;

fs_csaddr block address of cylinder group summary area;

fs_pendingblocks blocks in process of being freed;

fs_pendinginodes i-nodes in process of being freed;

fs_snapinum space reserved for snapshots;

fs_avgfilesize expected average file size;

fs_avgfpdir expected number of files per directory;

fs_sparecon reserved for future constants;

fs_flags see FS_ flags below;

fs_fscktime last time fsck(8)ed;

fs_contigsumsize size of cluster summary array;

fs_maxsymlinklen maximum length of an internal symlink;

fs_inodefmt format of on-disk i-nodes;

fs_maxfilesize maximum representable file size;

fs_qbmask ~fs_bmask - for use with quad size;

fs_qfmask ~fs_fmask - for use with quad size;

fs_state validate fs_clean field;

fs_postblformat format of positional layout tables;

fs_nrpos number of rotational positions;

fs_postbloff (u_int16) rotation block list head;

fs_rotbloff (u_int8) blocks for each rotation;

fs_magic magic number;

fs_space list of blocks for each rotation.

214 CHAPTER 14. THE FILE SYSTEM.

Each disk drive contains some number of file systems. A file system consists of a number of cylinder
groups. Each cylinder group has inodes and data. A file system is described by its super-block,
which in turn describes the cylinder groups. The super-block is critical data and is replicated in
each cylinder group to protect against catastrophic loss. This is done at file system creation time
and the critical super-block data does not change, so the copies need not be referenced further
unless disaster strikes. Addresses stored in inodes are capable of addressing fragments of “blocks”.
File system blocks of at most size MAXBSIZE can be optionally broken into 2, 4, or 8 pieces, each
of which is addressable; these pieces may be DEV_BSIZE, or some multiple of a DEV_BSIZE unit.
Large files consist of exclusively large data blocks. To avoid undue wasted disk space, the last data
block of a small file is allocated only as many fragments of a large block as are necessary. The
file system format retains only a single pointer to such a fragment, which is a piece of a single
large block that has been divided. The size of such a fragment is determinable from information
in the inode, using the blksize macro. The file system records space availability at the fragment
level; to determine block availability, aligned fragments are examined. The root inode, as the name
implies, is the root of the file system. Inode 0 can’t be used for normal purposes and historically
bad blocks were linked to inode 12 . Thus the root inode is 2. The fs_minfree element gives
the minimum acceptable percentage of file system blocks that may be free. If the freelist drops
below this level, only the super-user may continue to allocate blocks. The fs_minfree element
may be set to 0 if no reserve of free blocks is deemed necessary, although severe performance
degradations will be observed if the file system is run at greater than 95% full; thus the default
value of fs_minfree is 5%. Empirically the best trade-off between block fragmentation and overall
disk utilization at a loading of 95% comes with a fragmentation of 8; thus the default fragment
size is an eighth of the block size. The element fs_optim specifies whether the file system should
try to minimize the time spent allocating blocks (FS_OPTTIME), or if it should attempt to minimize
the space fragmentation on the disk (FS_OPTSPACE). If the value of fs_minfree is less than 5%,
then the file system defaults to optimizing for space to avoid running out of full sized blocks. If the
value of fs_minfree is greater than or equal to 5%, fragmentation is unlikely to be problematical
and the file system defaults to optimizing for time. The fs_flags element specifies how the file
system was mounted:

FS_UNCLEAN the file system was mounted uncleanly.

14.2.3 Cylinder group related limits.

Each cylinder keeps track of the availability of blocks at different rotational positions, so that
sequential blocks can be laid out with minimum rotational latency. With the default of 1 distinct
rotational position, the resolution of the summary information is 16 ms for a typical 3600 RPM
drive. The element fs_rotdelay was once used to tweak block layout. Each file system has a
statically allocated number of inodes, determined by its size and the desired number of file data
bytes per inode at the time it was created. See newfs(8) for details on how to set this and other file
system parameters. By default, the inode allocation strategy is extremely conservative. MINBSIZE
is the smallest allowable block size. With a MINBSIZE of 4096 it is possible to create files of size
232 with only two levels of indirection. MINBSIZE must be big enough to hold a cylinder group
block, thus changes to struct cg must keep its size within MINBSIZE. Note that super-blocks are
never more than size SBSIZE. The path name on which the file system is mounted is maintained
in fs_fsmnt. MAXMNTLEN defines the amount of space allocated in the super-block for this name.
Per cylinder group information is summarized in blocks allocated from the first cylinder group’s
data blocks. These blocks are read in from fs_csaddr, of size fs_cssize, in addition to the
super-block. Note that sizeof(struct csum) must be a power of two in order for the fs_cs
macro to work.

2Inode 1 is no longer used for this purpose; however, numerous dump tapes make this assumption, so we are
stuck with it.

14.2. THE OPENBSD ENHANCED FAST FILE SYSTEM. 215

14.2.4 Super-block for a file system.

The size of the rotational layout tables is limited by the fact that the super-block is of size SBSIZE.
The size of these tables is inversely proportional to the block size of the file system. The size of the
tables is increased when sector sizes are not powers of two, as this increases the number of cylinders
included before the rotational pattern repeats, fs_cpc. The size of the rotational layout tables
is derived from the number of bytes remaining in struct fs. The number of blocks of data per
cylinder group is limited because cylinder groups are at most one block. The inode and free block
tables must fit into a single block after deducting space for the cylinder group structure struct
cg. In listing 14.4 we show a program that read the superblock of a file system and shows some
informations.

Listing 14.4: superblock - a program to retrieve a file system superblock.
1 /* -*- mode: c-mode; -*- */
2
3 /* File superblock.c. */
4 #include <stdio.h>
5 #include <stdlib.h>
6 #include <string.h>
7 #include <unistd.h>
8 #include <fcntl.h>
9 #include <util.h>

10 #include <fstab.h>
11 #include <errno.h>
12 #include <sys/types.h>
13 #include <sys/param.h>
14 #include <sys/ioctl.h>
15 #include <sys/dkio.h>
16 #include <sys/buf.h>
17 #include <sys/disklabel.h>
18 #include <ufs/ffs/fs.h>
19 #include <ufs/ufs/quota.h>
20 #include <ufs/ufs/inode.h>
21
22 /* program superblock. */
23 #define FOREVER for (;;)
24
25 /* Types. */
26 union tagFS {
27 struct fs u_fs;
28 char u_pad[SBSIZE];
29 };
30
31 typedef union tagFS fsu_t;
32
33 /* Functions prototypes. */
34 int main(int , char *[]);
35
36 /* Main function. */
37 int main(int argc , char *argv [])
38 {
39 char *name , *realdev;
40 int i, diskfd;

216 CHAPTER 14. THE FILE SYSTEM.

41 long int ret;
42 fsu_t fsun1;
43 off_t sbtry [] = SBLOCKSEARCH;
44 ssize_t n;
45 struct fstab *fs;
46
47 /* Check arguments. */
48 if(argc == 2) {
49 if(pledge("stdio␣rpath␣disklabel", NULL) >= 0) {
50 if((fs = getfsfile(argv[1])) != NULL)
51 name = fs -> fs_spec;
52 else
53 name = argv[1];
54 printf("Opening:␣%s\n", name);
55 if((diskfd = opendev(name , O_RDONLY , 0, NULL)) >= 0) {
56 for(i = 0; sbtry[i] != 1; i++) {
57 n = pread(diskfd , &fsun1.u_fs , SBLOCKSIZE , (off_t)

sbtry[i]);
58 if(n == SBLOCKSIZE && (fsun1.u_fs.fs_magic ==

FS_UFS1_MAGIC || \
59 (fsun1.u_fs.fs_magic == FS_UFS2_MAGIC && \
60 fsun1.u_fs.fs_sblockloc == sbtry[i])) && \
61 !(fsun1.u_fs.fs_magic == FS_UFS1_MAGIC && \
62 sbtry[i] == SBLOCK_UFS2) && \
63 fsun1.u_fs.fs_bsize <= MAXBSIZE && \
64 fsun1.u_fs.fs_bsize >= sizeof(struct fs)) {
65 printf("super -block␣shift␣constant:␣%d\n", fsun1.u_fs

.fs_fsbtodb);
66 printf("super -block␣magic␣number:␣0x%0.8x\n", sun1.

u_fs.fs_magic);
67 printf("super -block␣offset:␣%d\n", fsun1.u_fs.

fs_sblkno);
68 ret = EXIT_SUCCESS;
69 break;
70 }
71 if(sbtry[i] == -1)
72 fprintf(stderr , "Could␣not␣find␣superblock␣for␣%s\n",

argv[1]);
73 }
74 close(diskfd);
75 } else
76 perror("opendev");
77 } else
78 perror("pledge");
79 } else
80 fprintf(stderr , "usage:␣superblock␣<fs >\n");
81 exit(ret);
82 }
83
84 /* End of superblock.c file. */

The program shows also the usage of the system call getfsfile. This function return a pointer

14.2. THE OPENBSD ENHANCED FAST FILE SYSTEM. 217

to an object with the following structure containing the broken-out fields of a line in the file system
description file <fstab.h>:

Listing 14.5: The fstab structure.
struct fstab {

char *fs_spec;
char *fs_file;
char *fs_vfstype;
char *fs_mntops;
char *fs_type;
int fs_freq;
int fs_passno;

};

The members are:

fs_spec block special device name;

fs_file file system path prefix;

fs_vfstype type of file system;

fs_mntops comma separated mount options;

fs_type rw, ro, sw, or xx;

fs_freq dump frequency, in days;

fs_passno pass number on parallel fsck.

The fields have meanings described in fstab(5). getfsfile function searches the entire file, opening
it if necessary, for a matching special file name or file system file name. All entries in the file with a
type field equivalent to FSTAB_XX are ignored. Lines which are formatted incorrectly are silently
ignored. The getfsfile function returns a null pointer on EOF or error. It is interesting to note
that depending on the file system type, the super-block is located at different positions. To achieve
a correct search, the offset in pread have to assume the values in the array sbtry which values are
provided by the SBLOCKSEARCH macro from <ufs/ffs/fs.h>:

#define BBSIZE 8192
#define SBSIZE 8192
#define BBOFF ((off_t)(0))
#define SBOFF ((off_t)(BBOFF + BBSIZE))
#define BBLOCK ((daddr_t)(0))
#define SBLOCK ((daddr_t)(BBLOCK + BBSIZE / DEV_BSIZE))
#define SBLOCK_UFS1 8192
#define SBLOCK_UFS2 65536
#define SBLOCK_PIGGY 262144
#define SBLOCKSIZE 8192
#define SBLOCKSEARCH \

{ SBLOCK_UFS2 , SBLOCK_UFS1 , SBLOCK_PIGGY , -1 }

To computes right values for the various quantities involved in the file system structure there are a
number of macros defined in <ufs/ffs/fs.h>:

fsbtodb(fs,b) turn file system block numbers into disk block addresses;

dbtofsb(fs,b) this maps file system blocks to DEV_BSIZE (a.k.a. 512-
byte) size disk blocks.

218 CHAPTER 14. THE FILE SYSTEM.

The following are cylinder group macros to locate things in cylinder groups, they compute file
system addresses of cylinder group data structures:

cgbase(fs,c) cylinder group base;

cgdata(fs,c) cylinder group data zone;

cgmeta(fs,c) cylinder group meta data;

cgdmin(fs,c) cylinder group 1st data;

cgimin(fs,c) cylinder group inode blk;

cgsblock(fs,c) cylinder group super blk;

cgtod(fs,c) cylinder group block;

cgstart(fs,c) start of cylinder group;

Macros for handling inode numbers:

ino_to_cg(fs,x) inode number to file system block offset;

ino_to_fsba(fs,x) inode number to file system block address;

ino_to_fsbo(fs,x) inode number to file system block offset;

dtog(fs,d) give cylinder group number for a file system block;

dtogd(fs,d) give frag block number in cylinder group for a file system
block;

blkmap(fs,map,loc) extract the bits for a block from a map;

cbtocylno(fs,bno) compute the cylinder block address;

cbtorpos(fs,bno) compute the cylinder rotational position block address;

The following macros optimize certain frequently calculated quantities by using shifts and masks in
place of divisions /, modulos % and multiplications *:

blkoff(fs,loc) calculates (loc % fs->fs_bsize);

fragoff(fs,loc) calculates (loc % fs->fs_fsize);

lblktosize(fs,blk) calculates ((off_t) blk * fs->fs_bsize);

lblkno(fs,loc) calculates (loc / fs->fs_bsize);

numfrags(fs,loc) calculates (loc / fs->fs_fsize);

blkroundup(fs,size) calculates roundup(size, fs->fs_bsize);

fragroundup(fs,size) calculates roundup(size, fs->fs_fsize);

fragstoblks(fs,frags) calculates (frags / fs->fs_frag);

blkstofrags(fs,blks) calculates (blks * fs->fs_frag);

fragnum(fs,fsb) calculates (fsb % fs->fs_frag);

blknum(fs,fsb) calculates rounddown(fsb, fs->fs_frag);

14.2. THE OPENBSD ENHANCED FAST FILE SYSTEM. 219

freespace(fs,p) determine the number of available frags given a percentage
to hold in reserve.

Determining the size of a file block in the file system:

blksize(fs,ip,lbn) dimension of a block;

dblksize(fs,dip,lbn) dimension of dinode block;

sblksize(fs,size,lbn) dimension of the super-block;

NSPB(fs) number of disk sectors per block; assumes DEV_BSIZE byte
sector size;

NSPF(fs) number of disk sectors per fragment; assumes DEV_BSIZE
byte sector size;

INOPB(fs) number of inodes per file system block (fs->fs_bsize);

INOPF(fs) number of inodes per file system fragment (fs->fs_fsize);

NINDIR(fs) number of indirects in a file system block.

FS_KERNMAXFILESIZE(pgsiz,fs) maximum file size the kernel allows. Even though ffs can
handle files up to 16 TB, the max file is limited to 231 pages
to prevent overflow of a 32-bit unsigned int. The buffer
cache has its own checks but a little added paranoia never
hurts:

14.2.5 Inodes.

The inode is the focus of all file activity in the UNIX file system. There is a unique inode allocated
for each active file, each current directory, each mounted-on file, text file and the root. An i-node
is named by its device/i-number pair. The on-disk inode structure is called dinode and is defined
in the include file <ufs/ufs/dinode.h>:

Listing 14.6: The dinode structures.
#define NXADDR 2 /* External addresses in inode */
#define NDADDR 12 /* Direct addresses in inode. */
#define NIADDR 3 /* Indirect addresses in inode. */

struct ufs1_dinode {
u_int16_t di_mode; /* 0: IFMT , permissions; see below.

*/
int16_t di_nlink; /* 2: File link count. */
union {

u_int16_t oldids [2]; /* 4: Ffs: old user and group ids.
*/

u_int32_t inumber; /* 4: Lfs: inode number. */
} di_u;
u_int64_t di_size; /* 8: File byte count. */
int32_t di_atime; /* 16: Last access time. */
int32_t di_atimensec; /* 20: Last access time. */
int32_t di_mtime; /* 24: Last modified time. */
int32_t di_mtimensec; /* 28: Last modified time. */
int32_t di_ctime; /* 32: Last inode change time. */

220 CHAPTER 14. THE FILE SYSTEM.

int32_t di_ctimensec; /* 36: Last inode change time. */
int32_t di_db[NDADDR]; /* 40: Direct disk blocks. */
int32_t di_ib[NIADDR]; /* 88: Indirect disk blocks. */
u_int32_t di_flags; /* 100: Status flags (chflags). */
int32_t di_blocks; /* 104: Blocks actually held. */
u_int32_t di_gen; /* 108: Generation number. */
u_int32_t di_uid; /* 112: File owner. */
u_int32_t di_gid; /* 116: File group. */
int32_t di_spare[2]; /* 120: Reserved; currently unused */

};

struct ufs2_dinode {
u_int16_t di_mode; /* 0: IFMT , permissions; see below.

*/
int16_t di_nlink; /* 2: File link count. */
u_int32_t di_uid; /* 4: File owner. */
u_int32_t di_gid; /* 8: File group. */
u_int32_t di_blksize; /* 12: Inode blocksize. */
u_int64_t di_size; /* 16: File byte count. */
u_int64_t di_blocks; /* 24: Bytes actually held. */
int64_t di_atime; /* 32: Last access time. */
int64_t di_mtime; /* 40: Last modified time. */
int64_t di_ctime; /* 48: Last inode change time. */
int64_t di_birthtime; /* 56: Inode creation time. */
int32_t di_mtimensec; /* 64: Last modified time. */
int32_t di_atimensec; /* 68: Last access time. */
int32_t di_ctimensec; /* 72: Last inode change time. */
int32_t di_birthnsec; /* 76: Inode creation time. */
int32_t di_gen; /* 80: Generation number. */
u_int32_t di_kernflags; /* 84: Kernel flags. */
u_int32_t di_flags; /* 88: Status flags (chflags). */
int32_t di_extsize; /* 92: External attributes block. */
int64_t di_extb[NXADDR];/* 96: External attributes block. */
int64_t di_db[NDADDR]; /* 112: Direct disk blocks. */
int64_t di_ib[NIADDR]; /* 208: Indirect disk blocks. */
int64_t di_spare[3]; /* 232: Reserved; currently unused */

};

As mentioned previously, one of the reasons to read the raw file system structure rather than going
through the operating system is to calculate disk space usage. To retrieve informations about a
directory or a file we can use fstat which reads these from the disk. fstat and related struct fstat
are defined in <sys/stat.h> described in 5.1. Listing takes inode informations from a file specified
in the command:

Listing 14.7: inode - a program to retrieve a file inode information.
1 /* -*- mode: c-mode; -*- */
2
3 /* File inode.c. */
4 #include <stdio.h>
5 #include <stdlib.h>
6 #include <string.h>
7 #include <unistd.h>
8 #include <fcntl.h>

14.2. THE OPENBSD ENHANCED FAST FILE SYSTEM. 221

9 #include <util.h>
10 #include <fstab.h>
11 #include <errno.h>
12 #include <sys/types.h>
13 #include <sys/param.h>
14 #include <sys/time.h>
15 #include <sys/ioctl.h>
16 #include <sys/dkio.h>
17 #include <sys/buf.h>
18 #include <sys/disklabel.h>
19 #include <sys/stat.h>
20
21 /* program inode. */
22 #define FOREVER for (;;)
23
24 /* Types. */
25
26 /* Functions prototypes. */
27 int main(int , char *[]);
28
29 /* Main function. */
30 int main(int argc , char *argv [])
31 {
32 int i, fd;
33 long int ret;
34 off_t offset;
35 ssize_t n; /* sysv stupidity */
36 struct stat sb;
37
38 /* Check arguments. */
39 if(argc == 2) {
40 printf("Opening␣file:␣%s\n", argv[1]);
41 if((fd = open(argv[1], O_RDONLY , 0, NULL)) >= 0) {
42 if(fstat(fd, &sb) >= 0) {
43 printf("inode’s␣device:␣%lld\n", sb.st_dev);
44 printf("inode’s␣number:␣%lld\n", sb.st_ino);
45 printf("inode␣protection␣mode:␣0x%0.6x\n", sb.st_mode);
46 printf("number␣of␣hard␣links:␣%lld\n", sb.st_nlink);
47 printf("user␣ID␣of␣the␣file’s␣owner:␣%lld\n", sb.st_uid);
48 printf("group␣ID␣of␣the␣file’s␣group:␣%lld\n", sb.st_gid)

;
49 printf("device␣type:␣%d\n", sb.st_rdev);
50 printf("time␣of␣last␣access:␣%s", ctime(&sb.st_atim.

tv_sec));
51 printf("time␣of␣last␣data␣modification:␣%s", ctime (&sb.

st_mtim.tv_sec));
52 printf("time␣of␣last␣file␣status␣change:␣%s", ctime (&sb.

st_ctim.tv_sec));
53 printf("file␣size␣in␣bytes:␣%lld\n", sb.st_size);
54 } else
55 perror("stat");
56 close(fd);

222 CHAPTER 14. THE FILE SYSTEM.

57 } else
58 perror("open");
59 } else
60 fprintf(stderr , "usage:␣inode␣<filename >\n");
61 exit(ret);
62 }
63
64 /* End of inode.c file. */

Chapter 15

Miscellaneous Routines.

Resource Limits.
Obtaining Resource Usage Information.
Manipulating Byte Strings.
Environment Variables.
The Current Working Directory.
Searching for Characters in Strings.
Determining Whether a File is a Terminal.
Printing Error Messages.
Sorting Arrays in Memory.

This chapter describes some useful system calls and library routines whose description don’t fit well
into the previous chapters.

15.1 Resource Limits.

On OpenBSD each process operates with certain limits on the resources it may use. These limits
prevent processes from creating files that are considered too large, using too much CPU time and
so on.

15.1.1 The getrlimit and setrlimit System Call.

Limits on the consumption of system resources by the current process and each process it creates
may be obtained with the getrlimit call and set with the setrlimit call. The first parameter
of both system calls is one of the following:

• RLIMIT_CORE — the largest size (in bytes) core file that may be created;

• RLIMIT_CPU — the maximum amount of CPU time (in seconds) to be used by each process;

• RLIMIT_DATA — the maximum size, in bytes, of the data segment for a process; this includes
memory allocated via malloc(3) and all other anonymous memory mapped via mmap(2);

• RLIMIT_FSIZE — the largest size (in bytes) file that may be created;

• RLIMIT_MEMLOCK — the maximum size, in bytes, which a process may lock into memory
using the mlock(2) function;

• RLIMIT_NOFILE — the maximum number of open files for this process;

• RLIMIT_NPROC — the maximum number of simultaneous processes for this user id;

223

224 CHAPTER 15. MISCELLANEOUS ROUTINES.

• RLIMIT_RSS — the maximum size, in bytes, to which a process’s resident set size may grow.
This setting is no longer enforced, but retained for compatibility;

• RLIMIT_STACK — the maximum size (in bytes) of the stack segment for a process, which
defines how far a process’s stack segment may be extended. Stack extension is performed
automatically by the system, and is only used by the main thread of a process;

A resource limit is specified as a soft limit and a hard limit. When a soft limit is exceeded a process
may receive a signal1, but it will be allowed to continue execution until it reaches the hard limit or
modifies its resource limit. The rlimit structure is used to specify the hard and soft limits on a
resource:

Listing 15.1: The rlimit structure.
struct rlimit {

rlim_t rlim_cur;
rlim_t rlim_max;

};

The members are:

rlim_cur current (soft) limit;

rlim_max hard limit.

Only the super-user may raise the maximum limits. Other users may only alter rlim_cur within the
range from 0 to rlim_max or, irreversibly, lower rlim_max. An infinite value for a limit is defined
as RLIM_INFINITY. A value of RLIM_SAVED_CUR or RLIM_SAVED_MAX will be stored in rlim_cur
or rlim_max respectively by getrlimit if the value for the current or maximum resource limit
cannot be stored in an rlim_t. The values RLIM_SAVED_CUR and RLIM_SAVED_MAX should not be
used in a call to setrlimit unless they were returned by a previous call to getrlimit. Because
this information is stored in the per-process information, this system call must be executed directly
by the shell if it is to affect all future processes created by the shell; limit is thus a built-in command
to csh(1) and ulimit is the sh(1) equivalent. The system refuses to extend the data or stack space
when the limits would be exceeded in the normal way: a brk(2) call fails if the data space limit is
reached. When the stack limit is reached, the process receives a segmentation fault (SIGSEGV); if
this signal is not caught by a handler using the signal stack, this signal will kill the process. A file
I/O operation that would create a file larger than the process’ soft limit will cause the write to fail
and a signal SIGXFSZ to be generated; this normally terminates the process, but may be caught.
When the soft CPU time limit is exceeded, a signal SIGXCPU is sent to the offending process. Upon
successful completion, the value 0 is returned; otherwise the value -1 is returned and the global
variable errno is set to indicate the error. The usual method to change resource limits is shown in
listing 15.2.

Listing 15.2: setlim - change resource limits.
1 /* -*- mode: c-mode; -*- */
2
3 /* File setlim.c. */
4 #include <stdio.h>
5 #include <stdlib.h>
6 #include <stdbool.h>
7 #include <string.h>
8 #include <errno.h>
9 #include <sys/types.h>

1For example, if the CPU time or file size is exceeded.

15.1. RESOURCE LIMITS. 225

10 #include <sys/time.h>
11 #include <sys/resource.h>
12
13 /* setlim program. */
14
15 /* Functions protitypes. */
16 long int setlim(int , rlim_t);
17 int main(int , char *[]);
18
19 /* Main function. */
20 int main(int argc , char *argv [])
21 {
22 bool ok = false;
23 char *bad;
24 int limit;
25 long int ret = EXIT_FAILURE;
26 rlim_t value;
27
28 /* Checks arguments. */
29 if(argc == 3) {
30 ok = true;
31 if(strncmp(argv[1], "cpu", 3) == 0)
32 limit = RLIMIT_CPU;
33 else if(strncmp(argv[1], "filesize", 8) == 0)
34 limit = RLIMIT_FSIZE;
35 else if(strncmp(argv[1], "data", 4) == 0)
36 limit = RLIMIT_DATA;
37 else if(strncmp(argv[1], "stack", 5) == 0)
38 limit = RLIMIT_STACK;
39 else if(strncmp(argv[1], "core", 4) == 0)
40 limit = RLIMIT_CORE;
41 else if(strncmp(argv[1], "rss", 3) == 0)
42 limit = RLIMIT_RSS;
43 else if(strncmp(argv[1], "memorylock", 10) == 0)
44 limit = RLIMIT_MEMLOCK;
45 else if(strncmp(argv[1], "nproc", 5) == 0)
46 limit = RLIMIT_NPROC;
47 else if(strncmp(argv[1], "openfiles", 9) == 0)
48 limit = RLIMIT_NOFILE;
49 else {
50 ok = false;
51 perror("unknown␣limit");
52 }
53 if(ok == true) {
54 if(strncmp(argv[2], "infinity", 8) == 0)
55 value = RLIM_INFINITY;
56 else {
57 value = (rlim_t) strtoul(argv[2], &bad , 0);
58 if(*bad != ’\0’) {
59 ok = false;
60 }
61 }

226 CHAPTER 15. MISCELLANEOUS ROUTINES.

62 if(ok == true) {
63 printf("set␣limit:␣%s(%d)\tto␣value:␣%lld\n", argv[1],

limit , value);
64 if(setlim(limit , value) == EXIT_SUCCESS)
65 ret = EXIT_SUCCESS;
66 else
67 perror("error␣setting␣limit");
68 } else
69 perror("bad␣numerical␣value␣for␣limit");
70 }
71 } else
72 fprintf(stderr , "usage:␣setlim␣<limit >␣<value >\n");
73 exit(ret);
74 }
75
76 /*
77 * setlim -- set the limit for the process.
78 */
79 long int setlim(int lim , rlim_t val)
80 {
81 long int ret = EXIT_FAILURE;
82 struct rlimit rlim;
83
84 /*
85 * Get the current limits so we
86 * will know the maximum value.
87 */
88 bzero(&rlim , sizeof(struct rlimit));
89 if(getrlimit(lim , &rlim) >= 0) {
90 printf("current␣limit:␣%lld\tmaximum␣limit:␣%lld\n", rlim.

rlim_cur , rlim.rlim_max);
91
92 /* Now change the current limit. */
93 rlim.rlim_cur = val;
94 if(setrlimit(lim , &rlim) >= 0)
95 ret = EXIT_SUCCESS;
96 }
97 return ret;
98 }
99

100 /* End of setlim.c file. */

15.2 Obtaining Resource Usage Information.

OpenBSD allows user to take tracks of resources usage on the system. To achieve that a data
structure and a system call were provided and defined in <sys/resource.h>. getrusage returns
resource usage information and takes two arguments. The first for argument, which can be one of
the following:

• RUSAGE_SELF — resources used by the current process;

• RUSAGE_CHILDREN — resources used by all the terminated children of the current process;

15.2. OBTAINING RESOURCE USAGE INFORMATION. 227

• RUSAGE_THREAD — resources used by the current thread.

The buffer to which the second argument points will be filled in with the following structure:

Listing 15.3: The rusage structure.
struct rusage {

struct timeval ru_utime;
struct timeval ru_stime;
long ru_maxrss;
long ru_ixrss;
long ru_idrss;
long ru_isrss;
long ru_minflt;
long ru_majflt;
long ru_nswap;
long ru_inblock;
long ru_oublock;
long ru_msgsnd;
long ru_msgrcv;
long ru_nsignals;
long ru_nvcsw;
long ru_nivcsw;

};

The fields are interpreted as follows:

ru_utime the total amount of time spent executing in user mode;

ru_stime the total amount of time spent in the system executing on behalf of the process(es);

ru_maxrss the maximum resident set size utilized, in kilobytes;

ru_ixrss an "integral" value indicating the amount of memory used by the text segment
that was also shared among other processes. This value is expressed in units of
kilobytes * ticks-of- execution;

ru_idrss an integral value of the amount of unshared memory residing in the data segment
of a process, expressed in units of kilobytes * ticks-of-execution;

ru_isrss an integral value of the amount of unshared memory residing in the stack segment
of a process, expressed in units of kilobytes * ticks-of-execution;

ru_minflt the number of page faults serviced without any I/O activity; here I/O activity is
avoided by reclaiming a page frame from the list of pages awaiting reallocation;

ru_majflt the number of page faults serviced that required I/O activity;

ru_nswap the number of times a process was swapped out of main memory;

ru_inblock the number of times the file system had to perform input;

ru_oublock the number of times the file system had to perform output;

ru_msgsnd the number of ipc messages sent;

ru_msgrcv the number of ipc messages received;

ru_nsignals the number of signals delivered;

228 CHAPTER 15. MISCELLANEOUS ROUTINES.

ru_nvcsw the number of times a context switch resulted due to a process voluntarily giving
up the processor before its time slice was completed, usually to await availability
of a resource;

ru_nivcsw the number of times a context switch resulted due to a higher priority process
becoming runnable or because the current process exceeded its time slice.

The numbers ru_inblock and ru_oublock account only for real I/O; data supplied by the caching
mechanism is charged only to the first process to read or write the data. Upon successful completion,
the value 0 is returned; otherwise the value -1 is returned and the global variable errno is set to
indicate the error. Listing 15.4 shows the usage data for the rusage program itself.

Listing 15.4: rusage - get usage data for the process itself.
1 /* -*- mode: c-mode; -*- */
2
3 /* File rusage.c. */
4 #include <stdio.h>
5 #include <stdlib.h>
6 #include <stdbool.h>
7 #include <string.h>
8 #include <errno.h>
9 #include <sys/types.h>

10 #include <sys/time.h>
11 #include <sys/resource.h>
12
13 /* rusage program. */
14
15 /* Functions protitypes. */
16 int main(int , char *[]);
17
18 /* Main function. */
19 int main(int argc , char *argv [])
20 {
21 long int ret = EXIT_FAILURE;
22 struct rusage usage;
23
24 /* */
25 if(getrusage(RUSAGE_SELF , &usage) >= 0) {
26 printf("user␣time␣used:␣%ld␣s\n", (time_t) usage.ru_utime.

tv_sec);
27 printf("system␣time␣used:␣%ld␣s\n", (time_t) usage.ru_stime.

tv_sec);
28 printf("maximum␣resident␣set␣size:␣%ld␣kB\n", usage.ru_maxrss

);
29 printf("integral␣shared␣text␣memory␣size:␣%ld␣kBt\n", usage.

ru_ixrss);
30 printf("integral␣unshared␣data␣size:␣%ld␣kBt\n", usage.

ru_idrss);
31 printf("integral␣unshared␣stack␣size:␣%ld␣kBt\n", usage.

ru_isrss);
32 printf("page␣reclaims:␣%ld\n", usage.ru_minflt);
33 printf("page␣faults:␣%ld\n", usage.ru_majflt);
34 printf("swaps:␣%ld\n", usage.ru_nswap);

15.3. MANIPULATING BYTE STRINGS. 229

35 printf("block␣input␣operations:␣%ld\n", usage.ru_inblock);
36 printf("block␣output␣operations:␣%ld\n", usage.ru_oublock);
37 printf("messages␣sent:␣%ld\n", usage.ru_msgsnd);
38 printf("messages␣received:␣%ld\n", usage.ru_msgrcv);
39 printf("signals␣received:␣%ld\n", usage.ru_nsignals);
40 printf("voluntary␣context␣switches:␣%ld\n", usage.ru_nvcsw);
41 printf("involuntary␣context␣switches:␣%ld\n", usage.ru_nivcsw

);
42 ret = EXIT_SUCCESS;
43 }
44 exit(ret);
45 }
46
47 /* End of rusage.c file. */

15.3 Manipulating Byte Strings.

Most users know the strcmp, strcpy, strncmp and strncpy routines, they work fine for NUL
terminated strings of characters. They do not fit for generic usage, where we have to deal with
arrays of non-printing characters such as ’\0’. In that case, we could use bcmp, bcopy, bzero,
memcmp, memcpy, memmove and memset.

15.3.1 The bcmp routine.

The bcmp function takes three arguments. It compares byte pointed by the first parameter against
byte string pointed by the second argument, returning zero if they are identical, non-zero otherwise.
Both strings are assumed to be of length in bytes as specified in the third argument. Zero-length
strings are always identical. The strings may overlap.

15.3.2 The bcopy routine.

The bcopy routine takes three arguments. It copies a number of bytes as specified in the third
argument from the buffer pointed by the first argument to the buffer pointed by the second argu-
ment. The two buffers may overlap. If the length specified in the third argument is zero, no bytes
are copied.

15.3.3 The bzero routine.

The bzero routine takes two arguments. It writes a number, specified in the second argument, of
zero bytes to the string pointed by the first argument. If the length in the second argument is zero,
bzero does nothing. The explicit_bzero variant behaves the same, but will not be removed by
a compiler’s dead store optimization pass, making it useful for clearing sensitive memory such as a
password.

15.3.4 The memcmp routine.

The memcmp function takes three arguments. It compares byte in the string, pointed by the first
argument, against byte string, pointed by the second argument. Both strings are assumed to be
of length specified in the third argument. The memcmp function returns zero if the two strings are
identical otherwise returns the difference between the first two differing bytes, treated as unsigned
char values, so that ’\200’ is greater than ’\0’, for example. Zero-length strings are always identical.

230 CHAPTER 15. MISCELLANEOUS ROUTINES.

15.3.5 The memcpy routine.

The memcpy routine takes three arguments. The memcpy function copies a number of bytes,
specified by the third argument, from buffer pointed by the second argument, to buffer pointed
by the first argument. If the two buffers may overlap, memmove(3) must be used instead. The
memcpy function returns the original value of the first argument.

15.3.6 The memmove routine.

The memmove function takes three arguments. It copies the number of bytes, specified in the third
argument, bytes from the buffer pointed by the second argument to the buffer pointed by the first
argument. The two buffers may overlap; the copy is always done in a non-destructive manner. The
memmove function returns the original value of the first argument.

15.3.7 The memset routine.

The memset function takes three arguments. It writes a count of bytes, as specified in the third
argument, of the same value of the second argument, converted to an unsigned char, to the
string pointed by the first argument. The memset function returns the original value of the first
argument.

15.4 Environment Variables.

To handle environment variables, OpenBSD provides a set of system routines: getenv, setenv,
putenv and unsetenv. These functions set, unset, and fetch environment variables from the host
environment list. The getenv function obtains the current value of the environment variable name.
If the variable name is not in the current environment, a null pointer is returned. The setenv
function inserts or resets the environment variable name in the current environment list. If the
variable name does not exist in the list, it is inserted with the given value. If the variable does exist,
the argument overwrite is tested; if overwrite is zero, the variable is not reset, otherwise it is reset
to the given value. The putenv function takes an argument of the form name=value. The memory
pointed to by string becomes part of the environment and must not be deallocated by the caller.
If the variable already exists, it will be overwritten. A common source of bugs is to pass a string
argument that is a locally scoped string buffer. This will result in corruption of the environment
after leaving the scope in which the variable is defined. For this reason, the setenv function is
preferred over putenv. The unsetenv function deletes all instances of the variable name pointed
to by name from the list. The putenv, setenv and unsetenv functions return the value 0 if
successful; otherwise the value -1 is returned and the global variable errno is set to indicate the
error. The getenv function returns a pointer to the requested value, or NULL if it could not be
found. If getenv is successful, the string returned should be considered read-only.

15.5 The Current Working Directory.

OpenBSD provides a function to return the current working directory to the user: getcwd. The
getcwd function copies the absolute pathname of the current working directory into the memory
referenced by the first argument and returns a pointer to the buffer. The second argument is the
size, in bytes, of the array referenced by the buffer pointed by the first argument. If this pointer
is not NULL and the length of the pathname plus the terminating NUL character is greater than
the second argument, a null pointer is returned and errno is set to ERANGE. As an extension to
IEEE Std 1003.1-2001 ("POSIX.1"), if the first argument is NULL, space is allocated as necessary
to store the pathname. In this case, it is the responsibility of the caller to free(3) the pointer that

15.6. SEARCHING FOR CHARACTERS IN STRINGS. 231

getcwd returns. Upon successful completion, a pointer to the pathname is returned. Otherwise a
null pointer is returned and errno is set to indicate the error.

15.6 Searching for Characters in Strings.

Two function are provided by OpenBSD to achieve character search in a NUL terminated string:
strchr and strrchr both defined in <string.h> They takes two arguments: strchr locates the
first occurrence, strrchr the last occurrence, of the character specified by the second argument,
converted to a char, in the string pointed by the first argument. The terminating NUL character
is considered part of the string itself. If the second argument is ’\0’, strchr and strrchr locate
the terminating ’\0’. They returns a pointer to the located character or NULL if the character does
not appear in the string.

15.7 Determining Whether a File is a Terminal.

OpenBSD provides four functions: ttyname, ttyname_r, isatty defined in <unistd.h> and
ttyslot defined in <stdlib.h>. These functions operate on the system file descriptors for terminal
type devices. These descriptors are not related to the standard I/O FILE typedef, but refer to the
special device files found in /dev and named /dev/ttyXX and for which an entry exists in the
initialization file /etc/ttys, see ttys(5). The isatty function determines if the file descriptor in
the first argument refers to a valid terminal type device. The ttyname and ttyname_r functions
get the related device name of a file descriptor for which isatty is true. The ttyname_r function
stores the NUL-terminated pathname of the terminal associated with the file descriptor of the first
argument in the character array referenced by the second argument. The array length in bytes
is specified in the third argument and should have space for the name and the terminating NUL
character. The maximum length of the terminal name is TTY_NAME_MAX. The ttyslot function
fetches the current process’s controlling terminal number from the ttys(5) file entry. The ttyname
function returns the NUL-terminated name if the device is found and isatty is true; otherwise a
null pointer is returned and errno is set to indicate the error. The ttyname_r function returns
zero if successful; otherwise an error number is returned. The isatty function returns 1 if the
file descriptor in the first argument is associated with a terminal device; otherwise it returns 0 and
errno is set to indicate the error. The ttyslot function returns the unit number of the device file
if found; otherwise the value zero is returned.

15.8 Printing Error Messages.

OpenBSD provides perror psignal, strerror and strsignal functions to help the user to deal
with error conditions. perror function is defined in <stdio.h>, psignal function in <signal.h>,
strerror and strsignal functions in <string.h>.

15.8.1 The perror routine.

The perror function looks up the error message string affiliated with an error number and writes
it, followed by a new-line, to the standard error stream. If the argument string is not the NULL
pointer and is not zero length, it is prepended to the message string and separated from it by a
colon and a space, ’: ’. Otherwise, only the error message string is printed. The contents of the
error message string are the same as those returned by strerror with argument errno.

15.8.2 The psignal routine.

The psignal routine takes two arguments. It locates the descriptive message string for the given
signal number in the first argument and writes it to the standard error. If the second argument is

232 CHAPTER 15. MISCELLANEOUS ROUTINES.

not NULL it is written to the standard error file descriptor prior to the message string, immediately
followed by a colon and a space, ’: ’. If the signal number is not recognized, see sigaction(2)
for a list, the string "Unknown signal" is produced. The message strings can be accessed directly
using the external array sys_siglist, indexed by recognized signal numbers. The external array
sys_signame is used similarly and contains short, upper-case abbreviations for signals which are
useful for recognizing signal names in user input. The defined value NSIG contains a count of the
strings in sys_siglist and sys_signame.

15.8.3 The strerror routine.

There are three versions of this function: strerror, strerror_l and strerror_r. These func-
tions map the error number specified in the first argument to an error message string. strerror
and strerror_l return a string containing a maximum of NL_TEXTMAX characters, including the
trailing NUL. This string is not to be modified by the calling program. The string returned by
strerror may be overwritten by subsequent calls to strerror in any thread. The string re-
turned by strerror_l may be overwritten by subsequent calls to strerror_l in the same thread.
strerror_r is a thread safe version of strerror that places the error message in the specified
buffer pointed by the second argument. On OpenBSD, the global locale, the thread-specific locale,
and the locale argument are ignored. strerror and strerror_l return a pointer to the error
message string. If an error occurs, the error code is stored in errno. strerror_r returns zero
upon successful completion. If an error occurs, the error code is stored in errno and the error code
is returned. These functions are defined in <string.h>.

Listing 15.5: strerror.c - prints out errors names.

1 /∗ −∗− mode : c−mode ; −∗− ∗/
2
3 /∗ F i l e s t r e r r o r . c . ∗/
4 #inc lude <s t d i o . h>
5 #inc lude <s t d l i b . h>
6 #inc lude <s t r i n g . h>
7 #inc lude <e r r no . h>
8
9 /∗ s t r e r r o r program . ∗/

10 #def ine FOREVER f o r (; ;)
11
12 /∗ Func t i on s p r o t o t y p e s . ∗/
13 i n t main (int , char ∗ []) ;
14
15 /∗ Main f u n c t i o n . ∗/
16 i n t main (i n t argc , char ∗ argv [])
17 {
18 i n t i ;
19 long i n t r e t ;
20
21 /∗ ∗/
22 r e t = EXIT_FAILURE ;
23 f o r (i = 0 ; i <= EPROTO; i++)
24 f p r i n t f (s t d e r r , " E r r o r ␣%d␣=␣%s \n" , i , s t r e r r o r (i)) ;
25 r e t = EXIT_SUCCESS ;
26 e x i t (r e t) ;
27 }
28

15.9. SORTING ARRAYS IN MEMORY. 233

29 /∗ End o f s t r e r r o r . c f i l e . ∗/

15.8.4 The strsignal routine.

The strsignal function returns a pointer to the string describing the signal specified in the first
argument. The array pointed to is not to be modified by the program, but may be overwritten by
subsequent calls to strsignal.

Listing 15.6: strsignal - program to list signals names.
1 /* -*- mode: c-mode; -*- */
2
3 /* File strsignal.c. */
4 #include <stdio.h>
5 #include <stdlib.h>
6 #include <string.h>
7 #include <errno.h>
8 #include <signal.h>
9

10 /* strsignal program. */
11 #define FOREVER for (;;)
12
13 /* Functions prototypes. */
14 int main(int , char *[]);
15
16 /* Main function. */
17 int main(int argc , char *argv [])
18 {
19 int i;
20 long int ret;
21
22 /* */
23 ret = EXIT_FAILURE;
24 for(i = SIGHUP; i <= SIGTHR; i++)
25 printf("Signal␣%d␣=␣%s\n", i, strsignal(i));
26 ret = EXIT_SUCCESS;
27 exit(ret);
28 }
29
30 /* End of strsignal.c file. */

15.9 Sorting Arrays in Memory.

OpenBSD provides three functions for sorting arrays: qsort, heapsort and mergesort. They are
defined in <stdlib.h> file and take four parameters. The qsort function is a modified partition-
exchange sort, or quicksort. The heapsort function is a modified selection sort. The mergesort
function is a modified merge sort with exponential search intended for sorting data with pre-existing
order. The qsort and heapsort functions sort an array of a number of objects specified in the
second argument, the initial member of which is pointed to by the first argument. The size of
each object is specified by the third argument. mergesort behaves similarly, but requires that
the third argument be greater than sizeof(void *) / 2. The contents of the array pointed by
the first argument are sorted in ascending order according to a comparison function pointed to

234 CHAPTER 15. MISCELLANEOUS ROUTINES.

by the fourth argument, which requires two arguments pointing to the objects being compared.
The comparison function must return an int less than, equal to, or greater than zero if the first
argument is considered to be respectively less than, equal to, or greater than the second. The
functions qsort and heapsort are not stable, that is, if two members compare as equal, their
order in the sorted array is undefined. The function mergesort is stable. The qsort function
is an implementation of C. A. R. Hoare’s quicksort algorithm, a variant of partition-exchange
sorting; in particular, see D. E. Knuth’s Algorithm Q. qsort takes O (n lg n) average time. This
implementation uses median selection to avoid its O

(
n2

)
worst-case behavior and will fall back to

heapsort if the recursion depth exceeds 2 lg n. The heapsort function is an implementation of J.
W. J. William’s heapsort algorithm, a variant of selection sorting; in particular, see D. E. Knuth’s
Algorithm H. heapsort takes O (n lg n) worst-case time. This implementation of heapsort is
implemented without recursive function calls. The function mergesort requires additional memory
of second argument value * third argument value bytes; it should be used only when space is not at a
premium. mergesort is optimized for data with pre-existing order; its worst case time is O (n lg n);
its best case is O (n). Normally, qsort is faster than mergesort, which is faster than heapsort.
Memory availability and pre-existing order in the data can make this untrue. The heapsort and
mergesort functions return the value 0 if successful; otherwise the value -1 is returned and the
global variable errno is set to indicate the error. Listing 15.7 show an application of qsort.

Listing 15.7: sort - a program to show qsort capability.

1 /* -*- mode: c-mode; -*- */
2
3 /* File sort.c. */
4 #include <stdio.h>
5 #include <stdlib.h>
6 #include <string.h>
7
8 char *array[] = { "XX", "YYY", "Z" };
9

10 #define N (sizeof(array) / sizeof(array[0]))
11
12 /* Functions prototypes. */
13 int cmp(const void *, const void *);
14 int main(int , char *[]);
15
16 /* Main function. */
17 int main(int argc , char *argv [])
18 {
19 long int ret = EXIT_FAILURE;
20 size_t i;
21
22 /* */
23 qsort(array , N, sizeof(array [0]), cmp);
24 for(i = 0; i < N; i++)
25 printf("%s\n", array[i]);
26 ret = EXIT_SUCCESS;
27 exit(ret);
28 }
29
30 /*
31 * cmp -- comparing elements function.
32 */

15.9. SORTING ARRAYS IN MEMORY. 235

33 int cmp(const void *a, const void *b)
34 {
35 /*
36 * a and b point to elements of the array.
37 * Cast and dereference to obtain the actual elements ,
38 * which are also pointers in this case.
39 */
40 size_t lena = strlen (*(const char **) a);
41 size_t lenb = strlen (*(const char **) b);
42
43 /*
44 * Do not subtract the lengths. The difference between values
45 * cannot be represented by an int.
46 */
47 return lena < lenb ? -1 : lena > lenb;
48 }
49
50 /* End of sort.c file. */

Appendix A

FORTRAN vs C Interoperability.

Data Representation.
Routines Naming.
Returning Values from Functions.
Passing Arguments.

The OpenBSD gcc C and g95 FORTRAN compilers were written to use the same object code
format. This feature permits the programmer to call FORTRAN functions from C programs and
vice-versa. FORTRAN programs can use many of the C library functions, system calls. C programs
can call funtions from FORTRAN libraries. Note that the information in this appendix is based on
the OpenBSD gcc C and g95 FORTRAN compilers on amd64 architecture.

A.1 Data Representation.

The following tab. A.1 is of corresponding FORTRAN and C variable declarations.

Table A.1: FORTRAN 90 vs C Declarations.

FORTRAN 90 C Extension

character(c_char) :: x char x; no

integer(c_int) :: x int x; no

integer(c_short) :: x short int x; no

integer(c_long) :: x long int x; no

integer(c_long_long) :: x long long int x; no

integer(c_signed_char) :: x char x; unsigned char x; no

integer(c_size_t) :: x size_t x; no

integer(c_int8_t) :: x int8_t x; no

integer(c_int16_t) :: x int16_t x; no

integer(c_int32_t) :: x int32_t x; no

integer(c_int64_t) :: x int64_t x; no

integer(c_int128_t) :: x int128_t x; yes

237

238 APPENDIX A. FORTRAN VS C INTEROPERABILITY.

Table A.1: FORTRAN 90 vs C Declarations.

FORTRAN 90 C Extension

character(c_char) :: x char x; no

integer(c_int_least8_t) :: x int_least8_t x; no

integer(c_int_least16_t) :: x int_least16_t x; no

integer(c_int_least32_t) :: x int_least32_t x; no

integer(c_int_least64_t) :: x int_least64_t x; no

integer(c_int_least128_t) :: x int_least128_t x; yes

integer(c_int_fast8_t) :: x int_fast8_t x; no

integer(c_int_fast16_t) :: x int_fast16_t x; no

integer(c_int_fast32_t) :: x int_fast32_t x; no

integer(c_int_fast64_t) :: x int_fast64_t x; no

integer(c_int_fst128_t) :: x int_fast128_t x; yes

integer(c_intmax_t) :: x intmax_t x; no

integer(c_intptr_t) :: x intptr_t x; no

integer(c_ptrdiff_t) :: x ptrdiff_t x; TS 29113

real(c_float) :: x float x; no

real(c_double) :: x double x; no

real(c_long_double) :: x long double x; no

real(c_float128) :: x _Float128 x; yes

complex(c_float_complex) :: x float _Complex x; no

complex(c_double_complex) :: x double _Complex x; no

complex(c_long_double_complex) :: x long double _Complex x; no

complex(c_float128_complex) :: x _Float128 _Complex x; yes

logical(c_bool) _Bool x; no

It should be noted that when dealing with arrays, C arrays are starting from element indexed as 0
to n-1, while FORTRAN arrays are indexed from 1 to n by default. FORTRAN arrays may be made
of index 0 by declaring them as name(0:n-1) instead of name(n). C stores arrays in row-major
order, while FORTRAN stores them in column-major order. This means that if a two-dimensional
array in C is subscripted as name[i][j], the same array in FORTRAN would be subscribed
as name(j, i). Likewise, the dimensions of the array would be exchanged when declaring it in the
two languages. In the following code example a FORTRAN 90 program is using C code, the hello
function:

Table A.2: FORTRAN 90 Program using C code.

FORTRAN Code C Code

A.2. ROUTINES NAMING. 239

Table A.2: FORTRAN 90 Program using C code.

FORTRAN Code C Code

! -*- mode: f90 -mode; -*-

! hello1 -for.f90 file.

program hello1

use , intrinsic :: iso_c_binding , only: c_int
implicit none

interface
subroutine hello(count) bind(C)

use , intrinsic :: iso_c_binding , only:
c_int

implicit none
integer(c_int), value :: count

end subroutine hello
end interface

integer(c_int) :: x
x = 10
call hello(x)
stop

end program hello1

! End of hello1 -for.f90 file.

/* -*- mode: c-mode; -*- */

/* hello1 -c.c file. */
#include <stdio.h>

void hello(int count)
{

printf("Hello ,␣%d␣worlds .\n", count);
}

/* End of hello1 -c.c file. */

In the second example a C program is using FORTRAN 90 code:

Table A.3: C program using FORTRAN 90 code.

FORTRAN Code C Code

/* -*- mode: c-mode; -*- */

/* hello2 -c.c file. */
#include <stdio.h>
#include <stdlib.h>

void hello_(int);
int main(int , char *argv []);

/* Main function. */
int main(int argc , char *argv [])
{

hello_ (10);
exit(EXIT_SUCCESS);

}

/* End of hello2 -c.c file. */

! -*- mode: f90 -mode; -*-

! hello2 -for.f90 file.

subroutine hello(count)
use , intrinsic :: iso_c_binding , only: c_int
implicit none
integer(c_int), value :: count
print "(’Hello ,␣’,␣i3 ,␣’␣worlds!’)", count

end subroutine hello

! End of hello2 -for.f90 file.

A.2 Routines Naming.

The FORTRAN compiler appends an underscore character “_” to each user-defined common pro-
cedure or function. The purpose is to avoid conflicts with C functions and variables of the same
name, most of the FORTRAN libraries are written in C. Unfortunately, it means the programmer
must be careful when naming his or her procedure.

240 APPENDIX A. FORTRAN VS C INTEROPERABILITY.

A.2.1 Naming C Routines to be Called from FORTRAN

In order for function1 written in C to be callable from a FORTRAN 90 program one can use an
interface block. All functions the reader have seen so far are internal functions that are contained
in a program or a module. Functions that are not contained in any program or modules are external
functions. A program can use internal functions, external functions and functions in modules.
Moreover, external functions can be in the same file of the program or in several files. External
functions can be considered as program units that are independent of each other. Thus, the only way
of communication among external functions, the main program and modules is through arguments.
In other words, from outside of an external function, it is impossible to use its variables, parameters
and internal functions. Any external function to be used should be listed in an interface block along
with the declaration of its arguments and their types and the type of the function value. Note that
an external function can be in the file containing the main program or module. As long as that
function is not contained in any program, function, or module, it is external and an interface block
is required in any program, function or module where this function is used such as in listing A.2.

A.2.2 Naming FORTRAN Routines to be Called from C

At the same time when a C program needs a FORTRAN 90 function or procedure we can write
something like the ones in listing A.3. In this case the calling convention is different. We specified a
function prototype corresponding to hello() procedure from FORTRAN code with a “_” appended
at the name. In the C program then this function will be called hello_(). Listing A.3 shows the
calling convention for a C program that wants to use FORTRAN 90 code.

A.3 Returning Values from Functions.

A.3.1 Return Values from C Code.

In the listings A.1 and A.2 a FORTRAN 90 program calling a C function is presented.

Listing A.1: mean - FORTRAN code
1 ! -*- mode: f90 -mode; -*-
2
3 ! mean -for.f90 file.
4
5
6 program meaning
7
8 use , intrinsic :: iso_c_binding , only: c_size_t , c_double
9 implicit none

10
11 interface
12
13 function mean(values , count) bind(C, name = "mean")
14 use , intrinsic :: iso_c_binding , only: c_size_t , c_double
15 implicit none
16 real(c_double) :: mean
17 integer(c_size_t), value :: count
18 real(c_double) :: values(1,count)
19 end function mean
20

1A C function returning void could be regarded as a FORTRAN procedure.

A.3. RETURNING VALUES FROM FUNCTIONS. 241

21 end interface
22
23 integer(c_size_t), parameter :: count = 10
24 real(c_double) :: values(count)
25 !
26 values (:) = (/1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0,

10.0/)
27 print "(’The␣mean␣is␣’,␣f16.6)", mean(values , count)
28 stop
29
30 end program meaning
31
32 ! End of mean -for.f90 file.

Listing A.2: mean - C code.

1 /* -*- mode: c-mode; -*- */
2
3 /* mean -c.c file. */
4 #include <stdio.h>
5 #include <stdlib.h>
6 #include <stdint.h>
7 #include <inttypes.h>
8
9 double mean(double values[], size_t count)

10 {
11 double ret = 0.;
12 size_t i;
13
14 /* Computing the mean for "count" values. */
15 for(i = 0; i < count; i++)
16 ret += values[i];
17 return (ret / (double) count);
18 }
19
20 /* End of mean -c.c file. */

A.3.2 Returning Values from FORTRAN 90 Code.

In these following listings: A.3 and A.4, a C program calls a FORTRAN 90 function computing the
two norm of a vector.

Listing A.3: norm2 - C code.

1 /* -*- mode: c-mode; -*- */
2
3 /* File norm2 -c.c. */
4 #include <stdio.h>
5 #include <stdlib.h>
6 #include <stdint.h>
7 #include <inttypes.h>
8
9 /* Functions prototypes. */

242 APPENDIX A. FORTRAN VS C INTEROPERABILITY.

10 double norm2_(double [], size_t);
11
12 /* Main function. */
13 int main(int argc , char *argv [])
14 {
15 double values [] = {
16 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0
17 };
18
19 /* Computes the two norm of a vector. */
20 printf("2␣norm:␣%lf\n", norm2_(values , 10));
21 exit(EXIT_SUCCESS);
22 }

Listing A.4: norm2 - FORTRAN Code.
1 ! -*- mode: f90 -mode; -*-
2
3 ! norm2 -for.f90 file.
4
5 function norm2(values , count)
6 use , intrinsic :: iso_c_binding , only: c_size_t , c_double
7 implicit none
8 real(c_double) :: norm2
9 real(c_double) :: r

10 integer(c_size_t), value :: count
11 real(c_double) :: values (1 : count)
12 integer :: i
13 !
14 do i = 1, count
15 if (i .eq. 1) then
16 norm2 = values (1) ** 2.0
17 else
18 norm2 = norm2 + values(i) ** 2.0
19 end if
20 end do
21 norm2 = sqrt(norm2)
22 end function norm2
23
24 ! End of norm2 -for.f90 file.

A.4 Passing Arguments.

A.4.1 Passing Arguments to a C Function.

Listing A.5: fft - FORTRAN code.
1 ! -*- mode: f90 -mode; -*-
2
3 ! fft -for.f90 file.
4
5 program ffting

A.4. PASSING ARGUMENTS. 243

6
7 use , intrinsic :: iso_c_binding
8 implicit none
9

10 interface
11
12 function dft(x, count) bind(C, name = "dft")
13 use , intrinsic :: iso_c_binding
14 implicit none
15 logical(c_bool) :: dft
16 integer(c_size_t), value :: count
17 complex(c_double_complex) :: x(1 : count)
18 end function dft
19
20 end interface
21
22 integer(c_size_t), parameter :: count = 10
23 complex(c_double_complex) :: x(1 : count)
24 integer :: i
25 !
26 x = (/ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0 /)
27 if (dft(x, count) .eqv. .true.) then
28 do i = 1, count
29 print *, x(i)
30 end do
31 else
32 print *, "Error␣computing␣the␣fft."
33 end if
34
35 end program ffting
36
37 ! End of fft -for.f90 file.

Listing A.6: fft - C code.
1 /* -*- mode: c-mode; -*- */
2
3 /* fft -c.c file. */
4 #include <stdio.h>
5 #include <stdlib.h>
6 #include <stdint.h>
7 #include <stdbool.h>
8 #include <inttypes.h>
9 #include <math.h>

10 #include <complex.h>
11 #include <string.h>
12
13 bool dft(double complex x[], size_t count)
14 {
15 bool ret = false;
16 double complex *temp , wn;
17 size_t j, k;
18

244 APPENDIX A. FORTRAN VS C INTEROPERABILITY.

19 if(count > 0) {
20 if((temp = (double complex *) calloc(count , sizeof(double

complex))) != NULL) {
21 wn = cexp (-2.0 * M_PI * I / (double) count);
22 for(j = 0; j < count; j++) {
23 for(k = 0; k < count; k++) {
24 temp[j] += x[k] * cpow(wn, (double) (j * k));
25 }
26 }
27 memcpy(x, temp , sizeof(double complex) * count);
28 free(temp);
29 ret = true;
30 }
31 }
32 return ret;
33 }
34
35 /* End of fft -c.c file.*/

A.4.2 Passing Arguments to a FORTRAN 90 procedure/function.

Listing A.7: ifft - FORTRAN code.
1 ! -*- mode: f90 -mode; -*-
2
3 function idft(x, count)
4 use , intrinsic :: iso_c_binding
5 implicit none
6 logical(c_bool) :: idft
7 integer(c_size_t), value :: count
8 complex(c_double_complex), intent(out) :: x(1 : count)
9 complex(c_double_complex) :: temp(1 : count), wn

10 real(c_double), parameter :: pi = 2.0 * asin (1.0)
11 integer :: j, k
12 !
13 idft = .false.
14 if(count .gt. 0) then
15 wn = exp(-2.0 * (0.0, 1.0) * pi / count)
16 do j = 1, count
17 temp(j) = (0.0, 0.0)
18 do k = 1, count
19 temp(j) = temp(j) + x(k) * wn ** ((j - 1) * (k - 1))
20 end do
21 temp(j) = temp(j) / count
22 end do
23 x(1 : count) = temp(1 : count)
24 idft = .true.
25 end if
26 end function idft
27
28 ! End of ifft -for.f90 file.

A.4. PASSING ARGUMENTS. 245

Listing A.8: ifft - C code.
1 /* -*- mode: c-mode; -*- */
2
3 /* ifft -c.c file. */
4 #include <stdio.h>
5 #include <stdlib.h>
6 #include <stdint.h>
7 #include <stdbool.h>
8 #include <inttypes.h>
9 #include <math.h>

10 #include <complex.h>
11 #include <string.h>
12
13 /* Functions prototypes. */
14 bool idft_(double complex [], size_t);
15 int main(int , char *[]);
16
17 /* Main function. */
18 int main(int argc , char *argv [])
19 {
20 long int ret = EXIT_FAILURE;
21 size_t i;
22 double complex x[] = {
23 0.0 + I * 0.0,
24 1.0 + I * 0.0,
25 2.0 + I * 0.0,
26 2.0 + I * 0.0,
27 1.0 + I * 0.0,
28 0.0 + I * 0.0,
29 -1.0 + I * 0.0,
30 -2.0 + I * 0.0,
31 -2.0 + I * 0.0,
32 -1.0 + I * 0.0,
33 0.0 + I * 0.0
34 };
35
36 if(idft_(x, 11) == true) {
37 for(i = 0; i < 11; i++) {
38 printf("%lf␣", creal(x[i]));
39 if(cimag(x[i]) >= 0.0)
40 printf("␣+␣");
41 printf("%lf␣i\n", cimag(x[i]));
42 }
43 ret = EXIT_SUCCESS;
44 }
45 }
46
47 /* End of ifft -c.c file. */

Appendix B

The Workstation Console Access.

Terminal Emulations.
Generic Display Device Support.
Generic Keyboard Device Support.
Generic Mouse Support.
The Console Keyboard/Mouse Multiplexor.

wscons stands for workstation console access, the driver provides support for machine-independent
access to the console. It is made of a number of cooperating modules, in particular:

• hardware support for display adapters, keyboards and mice: wsdisplay(4), wskbd(4) and
wsmouse(4);

• input event multiplexor described in wsmux(4);

• terminal emulation modules;

• compatibility options to support control operations and other low-level behaviour of existing
terminal drivers;

B.1 Terminal Emulations.

Terminal emulations wscons does not define its own set of terminal control sequences and special
keyboard codes in terms of termcap(5). Instead, a terminal emulation is assigned to each virtual
screen when the screen is created. Different terminal emulations can be active at the same time
on one display. The following choices are available:

dumb this minimal terminal support is always available. No control sequences are supported
besides the ASCII control characters. The cursor is not addressable. Only ASCII
keyboard codes will be delivered, cursor and functions keys do not work;

sun The "sun" console emulation is available by default on the sparc64 architecture, or
if option WSEMUL_SUN was specified at kernel build time. It supports the control
sequences of SUN machine consoles and delivers its keyboard codes for function and
keypad keys, as far as present on the actually used keyboard. ANSI colors are also
supported on this emulation, if the TERM environment variable is set to rcons-color;
This emulation is sufficient for full-screen applications;

vt100 is available by default, but can be disabled with option
WSEMUL_NO_VT100. It provides the most commonly used functions of DEC VT100

247

248 APPENDIX B. THE WORKSTATION CONSOLE ACCESS.

terminals with some extensions introduced by the DEC VT220 and DEC VT320 mod-
els. The features of the original VT100 which are not, or not completely, implemented
are:

• VT52 support, 132-column-mode, smooth scroll, light background, keyboard au-
torepeat control, external printer support, keyboard locking, newline/linefeed switch-
ing: Escape sequences related to these features are ignored or answered with
standard replies. (DECANM, DECCOLM, DECSCLM, DECSCNM, DECARM,
DECPFF, DECPEX, KAM, LNM);

• function keys are not reprogrammable and fonts cannot be downloaded. DECUDK
and DECDLD sequences will be ignored;

• neither C1 control set characters will be recognized nor will 8-bit keyboard codes
be delivered;

• the "DEC supplemental graphic" font is approximated by the ISO-latin-1 font,
though there are subtle differences;

• the actual rendering quality depends on the underlying graphics hardware driver.
Characters might be missing in the available fonts and be substituted by more or
less fitting replacements. Depending on the keyboard used, not all function keys
might be available.

In addition to the plain VT100 functions, the following features are supported:

• ANSI colors;

• some VT220-like presentation state settings and -reports (DECRSPS), especially
tabulator settings.

In most applications, wscons will work sufficiently as a VT220 emulator.

The wscons infrastructure is the subdivided in four sub modules, these take care of: the display
device, the keyboard device, the mouse device and the keyboard/mouse multiplexor.

B.2 Generic Display Device Support.

The wsdisplay driver is an abstraction layer for display devices within the wscons(4) framework.
It attaches to the hardware specific display device driver and makes it available as text terminal
or graphics interface. Display devices have the ability to display characters on them, without help
of an X server, either directly by hardware or through software drawing pixel data into the display
memory. The wsdisplay driver will connect a terminal emulation module and provide a tty-like
software interface. The console locator in the configuration line refers to the device’s use as output
part of the operating system console. A device specification containing a positive value here will
only match if the device is in use as system console. The console device selection in early system
startup is not influenced. This way, the console device can be connected to a known wsdisplay
device instance. The mux locator in the configuration line refers to the wsmux(4) that will be
used to get keyboard events. If this locator is -1, no mux will be used. The logical unit of an
independent contents displayed on a display, sometimes referred to as "virtual terminal", is called
a screen here. If the underlying device driver supports it, multiple screens can be used on one
display. As of this writing, only the lcd(4) and vga(4) display drivers provide this ability. Screens
have different minor device numbers and separate tty instances. One screen possesses the focus,
this means it is displayed on the display and its tty device will get the keyboard input. In some
cases, if no screen is set up or if a screen was just deleted, it is possible that no focus is present
at all. The focus can be switched by either special keyboard input, typically CTL- ALT-Fn, or an
ioctl command issued by a user program. Screens are set up or deleted through the /dev/ttyCcfg

B.2. GENERIC DISPLAY DEVICE SUPPORT. 249

control device, preferably using the wsconscfg(8) utility. In addition and with help from backend
drivers the following features are also provided:

• loading, deleting and listing the loaded fonts;

• browsing backwards in the screen output, the size of the buffer for saved text is defined by
the particular hardware driver;

• blanking the screen by timing out on inactivity in the screen holding the input focus. Awak-
ening activities consist of:

– pressing any keys on the keyboard;

– moving or clicking the mouse;

– any output to the screen.

Blanking the screen is usually done by disabling the horizontal sync signal on video output,
but may also include blanking the vertical sync in which case most monitors go into power
saving mode. See wsconsctl(8) for controlling variables.

Consult the back-end drivers’ documentation for which features are supported for each particular
hardware type.

B.2.1 The ioctl Interface.

The following ioctl(2) calls are provided by the wsdisplay driver or by devices which use it. Their
definitions are found in <dev/wscons/wsconsio.h>:

• WSDISPLAYIO_GTYPE u_int — retrieve the type of the display. The list of types is in
<dev/wscons/wsconsio.h>;

• WSDISPLAYIO_GINFO struct wsdisplay_fbinfo — retrieve basic information about a
framebuffer display. The returned structure is as follows;

Listing B.1: The wsdisplay_fbinfo structure.
struct wsdisplay_fbinfo {

u_int height;
u_int width;
u_int depth;
u_int cmsize;

};

The height and width members are counted in pixels. The depth member indicates the number
of bits per pixel, and cmsize indicates the number of color map entries accessible through
WSDISPLAYIO_GETCMAP and WSDISPLAYIO_PUTCMAP. This call is likely to be unavailable on
text-only displays;

• WSDISPLAYIO_GETSCREENTYPE struct wsdisplay_screentype — retrieve basic informa-
tion about a screen. The returned structure is as follows:

Listing B.2: The wsdisplay_screentype structure.
#define WSSCREEN_NAME_SIZE 16

struct wsdisplay_screentype {
int idx;
int nidx;

250 APPENDIX B. THE WORKSTATION CONSOLE ACCESS.

char name[WSSCREEN_NAME_SIZE];
int ncols;
int nrows;
int fontwidth;
int fontheight;

};

the idx member indicates the index of the screen. The nidx member indicates the number
of screens. The name member contains a human readable string used to identify the screen.
The ncols and nrows members indicate the available number of columns and rows. The
fontwidth and fontheight members indicate the dimensions of a character cell, in pixels;

• WSDISPLAYIO_GETCMAP struct wsdisplay_cmap — retrieve the current color map from
the display. This call needs the following structure set up beforehand:

Listing B.3: The wsdisplay_cmap structure.
struct wsdisplay_cmap {

u_int index;
u_int count;
u_char *red;
u_char *green;
u_char *blue;

};

The index and count members specify the range of color map entries to retrieve. The red,
green and blue members should each point to an array of count u_chars. On return, these
will be filled in with the appropriate entries from the color map. On all displays that support
this call, values range from 0 for minimum intensity to 255 for maximum intensity, even if
the display does not use eight bits internally to represent intensity;

• WSDISPLAYIO_PUTCMAP struct wsdisplay_cmap — change the display’s color map. The
argument structure is the same as for
WSDISPLAYIO_GETCMAP, but red, green and blue are taken as pointers to the values to
use to set the color map. This call is not available on displays with fixed color maps;

• WSDISPLAYIO_GVIDEO u_int — get the current state of the display’s video output. Possible
values are:

– WSDISPLAYIO_VIDEO_OFF — the display is blanked;
– WSDISPLAYIO_VIDEO_ON — the display is enabled;

• WSDISPLAYIO_SVIDEO u_int — set the state of the display’s video output. See
WSDISPLAYIO_GVIDEO above for possible values.

• WSDISPLAYIO_GCURPOS struct wsdisplay_curpos — retrieve the current position of the
hardware cursor. The returned structure is as follows:

Listing B.4: The wsdisplay_curpos structure.
struct wsdisplay_curpos {

u_int x;
u_int y;

};

The x and y members count the number of pixels right and down, respectively, from the
top-left corner of the display to the hot spot of the cursor. This call is not available on
displays without a hardware cursor.

B.2. GENERIC DISPLAY DEVICE SUPPORT. 251

• WSDISPLAYIO_SCURPOS struct wsdisplay_curpos— set the current cursor position. The
argument structure, and its semantics, are the same as for WSDISPLAYIO_GCURPOS. This call
is not available on displays without a hardware cursor.

• WSDISPLAYIO_GCURMAX struct wsdisplay_curpos— retrieve the maximum size of cursor
supported by the display. The x and y members of the returned structure indicate the
maximum number of pixel rows and columns, respectively, in a hardware cursor on this
display. This call is not available on displays without a hardware cursor.

• WSDISPLAYIO_GCURSOR struct wsdisplay_cursor — retrieve some or all of the hardware
cursor’s attributes. The argument structure is as follows:

Listing B.5: The wsdisplay_cursor struct.

struct wsdisplay_cursor {
u_int which;
u_int enable;
struct wsdisplay_curpos pos;
struct wsdisplay_curpos hot;
struct wsdisplay_cmap cmap;
struct wsdisplay_curpos size;
u_char *image;
u_char *mask;

};

The which member indicates which of the values the application requires to be returned. It
should contain the logical OR of the following flags:

– WSDISPLAY_CURSOR_DOCUR — get enable, which indicates whether the cursor is cur-
rently displayed (non-zero) or not (zero);

– WSDISPLAY_CURSOR_DOPOS — get pos, which indicates the current position of the
cursor on the display, as would be returned by WSDISPLAYIO_GCURPOS;

– WSDISPLAY_CURSOR_DOHOT — get hot, which indicates the location of the "hot spot"
within the cursor. This is the point on the cursor whose position on the display is treated
as being the position of the cursor by other calls. Its location is counted in pixels from
the top-left corner of the cursor;

– WSDISPLAY_CURSOR_DOCMAP— get cmap, which indicates the current cursor color map.
Unlike in a call to WSDISPLAYIO_GETCMAP, cmap here need not have its index and count
members initialized. They will be set to 0 and 2 respectively by the call. This means
that cmap.red, cmap.green, and cmap.blue must each point to at least enough space to
hold two u_chars;

– WSDISPLAY_CURSOR_DOSHAPE — get size, image, and mask. These are, respectively,
the dimensions of the cursor in pixels, the bitmap of set pixels in the cursor and the
bitmap of opaque pixels in the cursor. The format in which these bitmaps are returned,
and hence the amount of space that must be provided by the application, are device-
dependent;

– WSDISPLAY_CURSOR_DOALL — get all of the above.

The device may elect to return information that was not requested by the user, so those
elements of struct wsdisplay_cursor which are pointers should be initialized to NULL if not
otherwise used. This call is not available on displays without a hardware cursor.

252 APPENDIX B. THE WORKSTATION CONSOLE ACCESS.

• WSDISPLAYIO_SCURSOR struct wsdisplay_cursor — set some or all of the hardware
cursor’s attributes. The argument structure is the same as for WSDISPLAYIO_GCURSOR.
The which member specifies which attributes of the cursor are to be changed. It should
contain the logical OR of the following flags:

– WSDISPLAY_CURSOR_DOCUR — if enable is zero, hide the cursor. Otherwise, display it;
– WSDISPLAY_CURSOR_DOPOS — set the cursor’s position on the display to pos, the same

as WSDISPLAYIO_SCURPOS;
– WSDISPLAY_CURSOR_DOHOT — set the hot spot of the cursor, as defined above, to hot;
– WSDISPLAY_CURSOR_DOCMAP — set some or all of the cursor color map based on cmap.

The index and count elements of cmap indicate which color map entries to set, and the
entries themselves come from cmap.red, cmap.green, and cmap.blue;

– WSDISPLAY_CURSOR_DOSHAPE — set the cursor shape from size, image, mask. See
above for their meanings;

– WSDISPLAY_CURSOR_DOALL — do all of the above.

This call is not available on displays without a hardware cursor.

• WSDISPLAYIO_GMODE u_int — get the current mode of the display. Possible results include:

– WSDISPLAYIO_MODE_EMUL — the display is in emulating text mode;
– WSDISPLAYIO_MODE_MAPPED — the display is in mapped graphics mode;
– WSDISPLAYIO_MODE_DUMBFB — the display is in mapped frame buffer mode.

• WSDISPLAYIO_SMODE u_int — set the current mode of the display. For possible arguments,
see WSDISPLAYIO_GMODE.

• WSDISPLAYIO_LDFONT struct wsdisplay_font — loads a font specified by the wsdis-
play_font structure:

Listing B.6: The wsdisplay_font structure.
#define WSFONT_NAME_SIZE 32

struct wsdisplay_font {
char name[WSFONT_NAME_SIZE];
int index;
int firstchar
int numchars;
int encoding;
u_int fontwidth;
u_int fontheight;
u_int stride;
int bitorder;
int byteorder;
void *cookie;
void *data;

};

The name member contains a human readable string used to identify the font. The index
member may be used to select a driver-specific font resource, for non-raster frame buffers. A
value of -1 will pick the first available slot. The firstchar member contains the index of the
first character in the font, starting at zero. The numchars member contains the number of
characters in the font. The encoding member describes the font character encoding, using
one of the following values:

B.2. GENERIC DISPLAY DEVICE SUPPORT. 253

– WSDISPLAY_FONTEC__ISO — ISO-8859-1 encoding, also known as Latin-1. This is the
preferred encoding for raster frame buffers;

– WSDISPLAY_FONTENC_IBM — IBM code page number 437. This is the preferred encod-
ing for text-mode displays.

The fontwidth and fontheight members specify the dimensions of a character cell. The
stride member specify the number of bytes of font data per character cell line, usually
fontwidth rounded up to a byte boundary. The bitorder and byteorder members specify
the bit- and byte-ordering of the font data, using either one of the following values:

– WSDISPLAY_FONTORDER_L2R — leftmost data contained in the most significant bits,
left- to-right ordering. This is the most commonly encountered case;

– WSDISPLAY_FONTORDER_R2L — leftmost data contained in the least significant bits,
right- to-left ordering;

The data field contains the font character data to be loaded. The cookie field is reserved for
internal purposes.

• WSDISPLAYIO_LSFONT struct wsdisplay_font— retrieves the data for a loaded font into
the wsdisplay_font structure. The index field is set to the font resource to query. For the
argument structure, see WSDISPLAYIO_LDFONT;

• WSDISPLAYIO_USEFONT struct wsdisplay_font — selects the font specified in the name
field. An empty name selects the next available font. For the argument structure, see
WSDISPLAYIO_LDFONT;

• WSDISPLAYIO_GBURNER struct wsdisplay_burner — retrieves the state of the screen
burner. The returned structure is as follows:

Listing B.7: The wsdisplay_burner structure.
struct wsdisplay_burner {

u_int off;
u_int on;
u_int flags;

};

The off member contains the inactivity time before the screen is turned off, in milliseconds.
The on member contains the time before the screen is turned back on, in milliseconds. The
flags member contains a logical OR of the following flags:

– WSDISPLAY_BURN_VBLANK — when turning the display off, disable the vertical synchro-
nization signal;

– WSDISPLAY_BURN_KBD — monitor keyboard activity;

– WSDISPLAY_BURN_MOUSE — monitor mouse activity, this only works for mice using the
wsmouse(4) driver;

– WSDISPLAY_BURN_OUTPUT — monitor display output activity.

If none of the activity source flags are set, the screen burner is disabled.

• WSDISPLAYIO_SBURNER struct wsdisplay_burner — sets the state of the screen burner.
The argument structure, and its semantics, are the same as for WSDISPLAYIO_GBURNER.

• WSDISPLAYIO_ADDSCREEN struct wsdisplay_addscreendata — creates a new screen:

254 APPENDIX B. THE WORKSTATION CONSOLE ACCESS.

Listing B.8: The wsdisplay_addscreendata structure.
#define WSEMUL_NAME_SIZE 16

struct wsdisplay_addscreendata {
int idx;
char screentype[WSSCREEN_NAME_SIZE];
char emul[WSEMUL_NAME_SIZE];

};

The idx member is the index of the screen to be configured. The screentype member
is matched against builtin screen types, which will be driver-dependent. The emul member
indicates the terminal emulation type. Available terminal emulations are:

– sun — Sun terminal emulation. This is the default on the sparc64 architecture;
– vt100 — Dec VT100 terminal emulation, with some VT220 features. This is the default

on all other architectures;
– dumb — dumb terminal.

An empty string will select the default emulation;

• WSDISPLAYIO_DELSCREEN struct wsdisplay_delscreendata — deletes a screen:

Listing B.9: The wsdisplay_delscreendata structure.
struct wsdisplay_delscreendata {

int idx;
int flags;

};

The idx member indicates the index of the screen to be deleted. The flags member is a
logical OR of zero or more of the following:

– WSDISPLAY_DELSCR_FORCE — force deletion of screen even if in use by a userspace
program;

– WSDISPLAY_DELSCR_QUIET — don’t report deletion to console.

• WSDISPLAYIO_GETSCREEN struct wsdisplay_addscreendata — returns information on
the screen indicated by idx or the current screen if idx is -1. The screen and emulation types
are returned in the same structure, see
WSDISPLAYIO_GETPARAM;

• WSDISPLAYIO_SETSCREEN u_int — switch to the screen with the given index;

• WSDISPLAYIO_WSMOUSED struct wscons_event — this call is used by the wsmoused(8)
daemon to inject mouse events gathered from serial mice, as well as various control events;

• WSDISPLAYIO_GETPARAM struct wsdisplay_param — retrieves the state of a display pa-
rameter. This call needs the following structure set up beforehand:

Listing B.10: The wsdisplay_param structure.
struct wsdisplay_param {

int param;
int min;
int max;
int curval;
int reserved[4];

};

B.2. GENERIC DISPLAY DEVICE SUPPORT. 255

The param member should be set with the parameter to be returned. The following param-
eters are supported:

– WSDISPLAYIO_PARAM_BACKLIGHT — the intensity of the display backlight, usually on
laptop computers;

– WSDISPLAYIO_PARAM_BRIGHTNESS — the brightness level;

– WSDISPLAYIO_PARAM_CONTRAST — the contrast level.

On return, min and max specify the allowed range for the value, while curval specifies the
current setting. Not all parameters are supported by all display drivers.

• WSDISPLAYIO_SETPARAM struct wsdisplay_param— sets a display parameter. The argu-
ment structure is the same as for
WSDISPLAYIO_GETPARAM, with the param and curval members filled in. Not all param-
eters are supported by all display drivers.

• WSDISPLAYIO_LINEBYTES u_int — get the number of bytes per row when the device is in
WSDISPLAYIO_MODE_DUMBFB mode.

The following code shows the usage of some of the ioctl calls listed above:

Listing B.11: wsdisplay - program to show WSDISPLAYIO ioctl calls.
1 /* -*- mode: c-mode; -*- */
2
3 /* wsdisplay.c file. */
4 #include <stdio.h>
5 #include <stdlib.h>
6 #include <stdint.h>
7 #include <string.h>
8 #include <unistd.h>
9 #include <fcntl.h>

10 #include <errno.h>
11 #include <time.h>
12 #include <inttypes.h>
13 #include <sys/types.h>
14 #include <sys/ioctl.h>
15 #include <dev/wscons/wsconsio.h>
16
17 /* program wsdisplay.c */
18 /* Functions prototypes. */
19 int main(int , char *[]);
20
21 /* Main function. */
22 int main(int argc , char *argv [])
23 {
24 int fd;
25 long int ret = EXIT_FAILURE;
26 u_int gtype;
27
28 /* Check arguments count. */
29 if(argc == 2) {
30 fd = open(argv[1], O_RDONLY | O_EXCL , 0666);
31 if(fd >= 0) {

256 APPENDIX B. THE WORKSTATION CONSOLE ACCESS.

32 if(ioctl(fd, WSDISPLAYIO_GTYPE , >ype) >= 0) {
33 printf("type␣of␣display␣for␣%s:␣%d\n", argv[1], gtype);
34 ret = EXIT_SUCCESS;
35 } else
36 perror("ioctl");
37 close(fd);
38 } else
39 perror("open");
40 } else
41 fprintf(stderr , "usage:␣wsdisplay␣<device >\n");
42 exit(ret);
43 }
44
45 /* End of wsdisplay.c file. */

B.3 Generic Keyboard Device Support.

The wskbd driver handles common tasks for keyboards within the wscons(4) framework. It is
attached to the hardware specific keyboard drivers and provides their connection to wsdisplay
devices and a character device interface. The common keyboard support consists of:

• mapping from keycodes, defined by the specific keyboard driver, to keysyms, hardware inde-
pendent, defined in <dev/wscons/wsksymdef.h>;

• handling of compose sequences. Characters commonly not present as separate keys on key-
boards can be generated after either a special compose key is pressed or a dead accent
character is used;

• certain translations, like turning an ALT modifier into an ESC prefix;

• automatic key repetition, typematic;

• parameter handling for keyboard bells;

• generation of keyboard events for use by X servers.

The wskbd driver provides a number of ioctl functions to control key maps and other parameters.
These functions are accessible through the associated wsdisplay device as well. A complete list is
in <dev/wscons/wsconsio.h>. The console locator in the configuration line refers to the device’s
use as input part of the operating system console. The wskbd driver traps certain key sequences
intended to perform special functions. The Ctrl+Alt+Esc sequence will initiate the ddb(4) kernel
debugger if the ddb.console sysctl(8) variable is set.

B.3.1 The ioctl Interface.

As in the WSDISPLAY driver, wskbd driver provides a number of ioctl calls. These calls are defined
in
<dev/wscons/wsconsio.h>, they are:

• WSKBDIO_BELL — plays the wscons bell;

• WSKBDIO_COMPLEXBELL struct wskbd_bell_data — it uses the
struct wskbd_bell_data to play the bell. The structure is defined in
<dev/wscons/wsconsio.h>:

B.3. GENERIC KEYBOARD DEVICE SUPPORT. 257

Listing B.12: The wskbd_bell_data structure.
struct wskbd_bell_data {

u_int which;
u_int pitch;
u_int period;
u_int volume;

};

The which member could be one of:

– WSKBD_BELL_DOPITCH — to get or set the bell pitch;

– WSKBD_BELL_DOPERIOD — to get or set the bell period;

– WSKBD_BELL_DOVOLUME — to get or set the bell volume;

– WSKBD_BELL_DOALL — to set all the parameters at once.

The pitch member is the frequency in Hz of the sound to be emitted. The period member
is the value in milliseconds of the durantion of the bell sound and the volume member is
the percentage of the maximum value for the bell volume. In listing B.17 we manipulate the
wskbd_bell_data structure to modify the bell sound;

• WSKBDIO_SETBELL struct wskbd_bell_data — this call set the parameters for the bell
as stated in the WSKBDIO_COMPLEXBELL call;

• WSKBDIO_GETBELL struct wskbd_bell_data — retrieve the parameters for the bell spec-
ified in the wskbd_bell_data structure as stated in WSKBDIO_COMPLEXBELL;

• WSKBDIO_SETDEFAULTBELL struct wskbd_bell_data — as the previous ioctl call but re-
lated to the default bell;

• WSKBDIO_GETDEFAULTBELL struct wskbd_bell_data — as the previous ioctl call but re-
lated to the default bell;

• WSKBDIO_SETKEYREPEAT struct wskbd_keyrepeat_data — set keyboard autorepeat set-
tings. The structure wskbd_keyrepeat_data is defined in
<dev/wscons/wsconsio.h>:

Listing B.13: The wskbd_keyrepeat_data.
struct wskbd_keyrepeat_data {

u_int which;
u_int del1;
u_int delN;

};

The which member could be one of:

– WSKBD_KEYREPEAT_DODEL1 — get or set del1 member;

– WSKBD_KEYREPEAT_DODELN — get or set delN member;

– WSKBD_KEYREPEAT_DOALL — all of the above.

To get or set the corresponding struct member. The del1 member represents the delay before
the first pressure or a key in milliseconds and the last member delN sets the delay before rest
in milliseconds;

• WSKBDIO_GETKEYREPEAT struct wskbd_keyrepeat_data — get key repeat data as spec-
ified in WSKBDIO_SETKEYREPEAT;

258 APPENDIX B. THE WORKSTATION CONSOLE ACCESS.

• WSKBDIO_SETDEFAULTKEYREPEAT struct wskbd_keyrepeat_data — set key repeat data
as specified in WSKBDIO_SETKEYREPEAT for the default keyboard;

• WSKBDIO_GETDEFAULTKEYREPEAT struct wskbd_keyrepeat_data — get key repeat data
as specified in WSKBDIO_SETKEYREPEAT for the default keyboard;

• WSKBDIO_SETLEDS int — set the status for the keyboard leds as per the following constants:

– WSKBD_LED_CAPS;

– WSKBD_LED_NUM;

– WSKBD_LED_SCROLL;

– WSKBD_LED_COMPOSE.

Listing B.18 shows the usage of these calls.

• WSKBDIO_GETLEDS u_int — get leds status as specified in
WSKBDIO_SETLEDS;

• WSKBDIO_GETMAP struct wskbd_map_data — get the keyboard mapping settings. They
are stored in a structure of type wskbd_map_data:

Listing B.14: The wskbd_map_data structure.

struct wskbd_map_data {
u_int maplen;
struct wscons_keymap *map;

};

The maplen member is the number of entries in the map, the maximum count is defined
in the WSKBDIO_MAXMAPLEN constant. The map member is a pointer to the array of struct
wscons_keymap defined in <dev/wscons/wsksymvar.h>:

Listing B.15: The wscons_keymap structure.

typedef u_int16_t keysym_t;

struct wscons_keymap {
keysym_t command;
keysym_t group1[2];
keysym_t group2[2];

};

• WSKBDIO_SETMAP struct wskbd_map_data— set a new keymap for the keyboard, the data
is provided by wskbd_map_data structure described in WSKBDIO_GETMAP;

• WSKBDIO_GETENCODING kbd_t — encodings are defined in
<dev/wscons/wksymdef.h> file. See listing B.19 for an example of reading and setting
encoding;

• WSKBDIO_SETENCODING kbd_t— set the encoding for the keyboard. See WSKBDIO_GETENCODING;

• WSKBDIO_GETBACKLIGHT struct wskbd_backlight — get configurations for the back-
light on keyboards that support that features. The structure wskbd_backlight is defined
in <dev/wscons/wsconsio.h>:

B.3. GENERIC KEYBOARD DEVICE SUPPORT. 259

Listing B.16: The wskbd_backlight structure.
struct wskbd_backlight {

unsigned int min;
unsigned int max;
unsigned int curval;

};

The min and max members set the minimum and maximum intensity for the backlight. The
curval specifies the current value;

• WSKBDIO_SETBACKLIGHT struct wskbd_backlight — set the backlight configuration for
keyboards that support this feature. See
WSKBDIO_GETBACKLIGHT;

• WSKBDIO_SETMODE u_int — sets the mode for the keyboard. Possible values are:

– WSKBD_TRANSLATED—keys are translated throught the keyboard map. See WSKBDIO_SETMAP;

– WSKBD_RAW — keys are not filtered throught the keymap.

• WSKBDIO_GETMODE u_int—get the current translating mode for the keyboard. See WSKBDIO_SETMODE;

Listing B.17: wskbd - program to shows the usage of the wskbd driver.
1 /* -*- mode: c-mode; -*- */
2
3 /* wskbd.c file. */
4 #include <stdio.h>
5 #include <stdlib.h>
6 #include <stdint.h>
7 #include <string.h>
8 #include <unistd.h>
9 #include <fcntl.h>

10 #include <errno.h>
11 #include <time.h>
12 #include <inttypes.h>
13 #include <sys/types.h>
14 #include <sys/ioctl.h>
15 #include <dev/wscons/wsconsio.h>
16
17 #define FOREVER for (;;)
18
19 /* program wskbd.c */
20 /* Functions prototypes. */
21 int main(int , char *[]);
22
23 /* Main function. */
24 int main(int argc , char *argv [])
25 {
26 int fd;
27 long int ret = EXIT_FAILURE;
28 struct wskbd_bell_data o_wsbelldata , n_wsbelldata;
29
30 /* Check arguments count. */
31 if(argc == 2) {

260 APPENDIX B. THE WORKSTATION CONSOLE ACCESS.

32 fd = open(argv[1], O_RDWR | O_EXCL);
33 if(fd >= 0) {
34 printf("opened␣%s.\n", argv[1]);
35 if(ioctl(fd, WSKBDIO_BELL) >= 0) {
36 if(ioctl(fd, WSKBDIO_GETBELL , &o_wsbelldata) >= 0) {
37 printf("old␣GETBELL:␣%d␣%d␣%d␣%d\t", \
38 o_wsbelldata.which , \
39 o_wsbelldata.pitch , \
40 o_wsbelldata.period , \
41 o_wsbelldata.volume);
42 bzero(& n_wsbelldata , sizeof(struct wskbd_bell_data)

);
43 n_wsbelldata.which = WSKBD_BELL_DOPITCH;
44 n_wsbelldata.pitch = o_wsbelldata.pitch * 2;
45 if(ioctl(fd, WSKBDIO_SETBELL , &n_wsbelldata) >= 0)

{
46 printf("new␣GETBELL:␣%d␣%d␣%d␣%d\t", \
47 n_wsbelldata.which , \
48 n_wsbelldata.pitch , \
49 n_wsbelldata.period , \
50 n_wsbelldata.volume);
51 if(ioctl(fd, WSKBDIO_BELL) >= 0) {
52 sleep (5);
53 if(ioctl(fd, WSKBDIO_SETBELL , &o_wsbelldata) >=

0) {
54 printf("restore␣old␣GETBELL:␣%d␣%d␣%d␣%d\n",

\
55 o_wsbelldata.which , \
56 o_wsbelldata.pitch , \
57 o_wsbelldata.period , \
58 o_wsbelldata.volume);
59 if(ioctl(fd, WSKBDIO_BELL) >= 0) {
60 sleep (5);
61 ret = EXIT_SUCCESS;
62 } else
63 perror("error␣playing␣bell");
64 } else
65 perror("error␣setting␣bell␣data");
66 } else
67 perror("error␣playing␣bell");
68 } else
69 perror("error␣setting␣bell␣data");
70 } else
71 perror("error␣retrieving␣bell␣data");
72 } else
73 perror("error␣playing␣bell");
74 close(fd);
75 } else
76 perror("open");
77 } else
78 fprintf(stderr , "usage:␣wskbd␣<device >\n");
79 exit(ret);

B.3. GENERIC KEYBOARD DEVICE SUPPORT. 261

80 }
81
82 /* End of wskbd.c file. */

Listing B.18: wskbd-leds - program to shows the usage of the ioctl calls for leds.
1 /* -*- mode: c-mode; -*- */
2
3 /* wskbd -leds.c file. */
4 #include <stdio.h>
5 #include <stdlib.h>
6 #include <stdint.h>
7 #include <string.h>
8 #include <unistd.h>
9 #include <fcntl.h>

10 #include <errno.h>
11 #include <time.h>
12 #include <inttypes.h>
13 #include <sys/types.h>
14 #include <sys/ioctl.h>
15 #include <dev/wscons/wsconsio.h>
16
17 #define FOREVER for (;;)
18
19 /* program wskbd -leds.c */
20 /* Functions prototypes. */
21 int main(int , char *[]);
22
23 /* Main function. */
24 int main(int argc , char *argv [])
25 {
26 int fd;
27 long int ret = EXIT_FAILURE;
28 u_int i, o_gleds;
29
30 /* Check arguments count. */
31 if(argc == 2) {
32 fd = open(argv[1], O_RDWR | O_EXCL);
33 if(fd >= 0) {
34 printf("opened␣%s.\n", argv[1]);
35 if(ioctl(fd, WSKBDIO_GETLEDS , &o_gleds) >= 0) {
36 for(i = 1; i <= WSKBD_LED_COMPOSE; i = (i << 1)) {
37 printf("led␣=␣%d\n", i);
38 ioctl(fd , WSKBDIO_SETLEDS , &i);
39 sleep (2);
40 }
41 ioctl(fd , WSKBDIO_SETLEDS , &o_gleds);
42 } else
43 perror("error␣getting␣leds");
44 close(fd);
45 } else
46 perror("open");
47 } else

262 APPENDIX B. THE WORKSTATION CONSOLE ACCESS.

48 fprintf(stderr , "usage:␣wskbd -leds␣<device >\n");
49 exit(ret);
50 }
51
52 /* End of wskbd -leds.c file. */

Listing B.19: wskbd-enc - program to shows the configured encoding for the keyboard.
1 /* -*- mode: c-mode; -*- */
2
3 /* wskbd -enc.c file. */
4 #include <stdio.h>
5 #include <stdlib.h>
6 #include <stdint.h>
7 #include <string.h>
8 #include <unistd.h>
9 #include <fcntl.h>

10 #include <errno.h>
11 #include <time.h>
12 #include <inttypes.h>
13 #include <sys/types.h>
14 #include <sys/ioctl.h>
15 #include <dev/wscons/wsconsio.h>
16 #include <dev/wscons/wsksymdef.h>
17 #include <dev/wscons/wsksymvar.h>
18
19 #define FOREVER for (;;)
20
21 /* program wskbd -enc.c */
22 /* Functions prototypes. */
23 int main(int , char *[]);
24
25 /* Main function. */
26 int main(int argc , char *argv [])
27 {
28 int fd;
29 long int ret = EXIT_FAILURE;
30 kbd_t o_genc;
31
32 /* Check arguments count. */
33 if(argc == 2) {
34 fd = open(argv[1], O_RDWR | O_EXCL);
35 if(fd >= 0) {
36 printf("opened␣%s.\n", argv[1]);
37 if(ioctl(fd, WSKBDIO_GETENCODING , &o_genc) >= 0) {
38 printf("GETENCODING:␣0x%0.8x\n", KB_ENCODING(o_genc))

;
39 } else
40 perror("error␣getting␣encoding");
41 close(fd);
42 } else
43 perror("open");
44 } else

B.4. GENERIC MOUSE SUPPORT. 263

45 fprintf(stderr , "usage:␣wskbd -enc␣<device >\n");
46 exit(ret);
47 }
48
49 /* End of wskbd -enc.c file. */

B.4 Generic Mouse Support.

The wsmouse driver is an abstraction layer for mice within the wscons(4) framework. It is attached
to the hardware specific mouse drivers and provides a character device interface which returns struct
wscons_event via read(2). For use with X servers, “mouse events” can be generated.

B.4.1 The ioctl interface.

The following ioctl(2) calls are provided by the wsmouse driver or by devices which use it. Their
definitions are found in <dev/wscons/wsconsio.h>:

• WSMOUSEIO_GTYPE u_int — get the mouse type. Mice types are the following:

– WSMOUSE_TYPE_VSXXX — DEC serial;

– WSMOUSE_TYPE_PS2 2 — PS/2-compatible;

– WSMOUSE_TYPE_USB — USB mouse;

– WSMOUSE_TYPE_LMS — Logitech busmouse;

– WSMOUSE_TYPE_MMS — Microsoft InPort mouse;

– WSMOUSE_TYPE_TPANEL — Generic Touch Panel;

– WSMOUSE_TYPE_NEXT — NeXT mouse;

– WSMOUSE_TYPE_ARCHIMEDES — Archimedes mouse;

– WSMOUSE_TYPE_ADB — ADB;

– WSMOUSE_TYPE_HIL — HP HIL;

– WSMOUSE_TYPE_LUNA — OMRON Luna;

– WSMOUSE_TYPE_DOMAIN — Apollo Domain;

– WSMOUSE_TYPE_BLUETOOTH — Bluetooth mouse;

– WSMOUSE_TYPE_SUN — SUN serial mouse;

– WSMOUSE_TYPE_SYNAPTICS — Synaptics touchpad;

– WSMOUSE_TYPE_ALPS — ALPS touchpad;

– WSMOUSE_TYPE_SGI — SGI serial mouse;

– WSMOUSE_TYPE_ELANTECH — Elantech touchpad;

– WSMOUSE_TYPE_SYNAP_SBTN — Synaptics soft buttons;

– WSMOUSE_TYPE_TOUCHPAD — Generic touchpad.

• WSMOUSEIO_SRES u_int — set the resolution for the mouse;

• WSMOUSEIO_SCALIBCOORDS struct wsmouse_calibcoords —

• WSMOUSEIO_GCALIBCOORDS struct wsmouse_calibcoords —
get calibration coordinates constants from mouse device. The
struct wsmouse_calibcoords is defined in
<dev/wscons/wsconsio.h>:

264 APPENDIX B. THE WORKSTATION CONSOLE ACCESS.

Listing B.20: The wsmouse_calibcoords structure.
#define WSMOUSE_CALIBCOORDS_MAX 16

struct wsmouse_calibcoords {
int minx;
int miny;
int maxx;
int maxy;
int swapxy;
int resx;
int resy;
int samplelen;
struct wsmouse_calibcoord {

int rawx;
int rawy;
int x;
int y;

} samples[WSMOUSE_CALIBCOORDS_MAX];
};

The minx and miny members are the minimum values for x and y axes respectively. maxx
and maxy members are the maximum values for x and y axes respectively. swapxy member
is a flag which indicates the swap of x axis with the y one. resx and resy members are
the x and y axes resolution respectively. samplelen member is the number of samples
available or WSMOUSE_CALIBCOORDS_RESET for raw mode. The samples member is an array
of WSMOUSE_CALIBCOORDS_MAX elements for the rawx and rawy members raw coordinates,
instead, x and y members are the translated coordinates;

• WSMOUSEIO_SETMODE int — set mode for the mouse, allowed values are:

– WSMOUSE_COMPAT — compatibility mode;

– WSMOUSE_NATIVE — native mode.

• WSMOUSEIO_GETPARAMS struct wsmouse_parameters—get mouse parameters. The struct
wsmouse_parameters is defined in
<dev/wscons/wsconsio.h>:

Listing B.21: The wsmouse_parameters structure.
struct wsmouse_parameters {

struct wsmouse_param *params;
u_int nparams;

};

The params member is a pointer to the array of type struct wsmouse_param:

Listing B.22: The wsmouse_param structure.
struct wsmouse_param {

enum wsmousecfg key;
int value;

};

In this structure, the key member is a constant which can assume the following values:

– WSMOUSECFG_DX_SCALE — x-scale factor in [*.12] fixed-point format;

B.4. GENERIC MOUSE SUPPORT. 265

– WSMOUSECFG_DY_SCALE — y-scale factor in [*.12] fixed-point format;

– WSMOUSECFG_PRESSURE_LO — pressure limits defining start of touch;

– WSMOUSECFG_PRESSURE_HI — pressure limits defining end of touch;

– WSMOUSECFG_TRKMAXDIST — max distance to pair points for MT contact;

– WSMOUSECFG_SWAPXY — swap x- and y-axis;

– WSMOUSECFG_X_INV — map absolute coordinate x to (inv - x);

– WSMOUSECFG_Y_INV — map absolute coordinate y to (inv - y);

– WSMOUSECFG_REVERSE_SCROLLING — reverse scroll directions;

– WSMOUSECFG__FILTERS— coordinate handling, applying only in WSMOUSE_COMPATmode;

– WSMOUSECFG_DX_MAX — ignore x deltas greater than this limit

– WSMOUSECFG_DY_MAX — ignore y deltas greater than this limit;

– WSMOUSECFG_X_HYSTERESIS — retard value for x coordinates;

– WSMOUSECFG_Y_HYSTERESIS — retard value for y coordinates;

– WSMOUSECFG_DECELERATION — threshold, distance, for deceleration;

– WSMOUSECFG_STRONG_HYSTERESIS — false and read-only, the feature is not supported
anymore;

– WSMOUSECFG_SMOOTHING — smoothing factor (0-7);

– WSMOUSECFG__TPFILTERS — touchpad features;

– WSMOUSECFG_SOFTBUTTONS — 2 soft-buttons at the bottom edge;

– WSMOUSECFG_SOFTMBTN — add a middle-button area;

– WSMOUSECFG_TOPBUTTONS — 3 soft-buttons at the top edge;

– WSMOUSECFG_TWOFINGERSCROLL — enable two-finger scrolling;

– WSMOUSECFG_EDGESCROLL — enable edge scrolling;

– WSMOUSECFG_HORIZSCROLL — enable horizontal edge scrolling;

– WSMOUSECFG_SWAPSIDES — invert soft-button/scroll areas;

– WSMOUSECFG_DISABLE — disable all output except for clicks in the top-button area;

– WSMOUSECFG_MTBUTTONS — multi-touch buttons;

– WSMOUSECFG__TPFEATURES —

– WSMOUSECFG_LEFT_EDGE — ratio: left edge / total width;

– WSMOUSECFG_RIGHT_EDGE — ratio: right edge / total width;

– WSMOUSECFG_TOP_EDGE — ratio: top edge / total height;

– WSMOUSECFG_BOTTOM_EDGE — ratio: bottom edge / total height;

– WSMOUSECFG_CENTERWIDTH — ratio: center width / total width;

– WSMOUSECFG_HORIZSCROLLDIST — distance mapped to a scroll event;

– WSMOUSECFG_VERTSCROLLDIST — distance mapped to a scroll event;

– WSMOUSECFG_F2WIDTH — width limit for single touches;

– WSMOUSECFG_F2PRESSURE — pressure limit for single touches;

– WSMOUSECFG_TAP_MAXTIME — max. duration of tap contacts in milliseconds;

– WSMOUSECFG_TAP_CLICKTIME — time between the end of a tap and the button-up-
event in milliseconds;

266 APPENDIX B. THE WORKSTATION CONSOLE ACCESS.

– WSMOUSECFG_TAP_LOCKTIME — time between a tap-and-drag action and the button-
up-event in milliseconds;

– WSMOUSECFG_TAP_ONE_BTNMAP — one-finger tap button mapping;

– WSMOUSECFG_TAP_TWO_BTNMAP — two-finger tap button mapping;

– WSMOUSECFG_TAP_THREE_BTNMAP — three-finger tap button mapping;

– WSMOUSECFG_MTBTN_MAXDIST — MTBUTTONS: distance limit for two-finger clicks;

– WSMOUSECFG__TPSETUP — enable/disable debug output;

– WSMOUSECFG_LOG_INPUT —

– WSMOUSECFG_LOG_EVENTS —

– WSMOUSECFG__DEBUG —

The second member, value, is the value for the corresponding parameter.

For the wsmouse_parameters structure, the nparams member is the count of the elements
in the array pointed by params;

• WSMOUSEIO_SETPARAMS struct wsmouse_parameters — obtains and sets various mouse
parameters as a key/value set. Currently these primarily relate to touchpads. The structure
struct wsmouse_parameters is defined as in
WSMOUSEIO_GETPARAMS. The number of parameters to read or write must be specified in
nparams. For each parameter, when
WSMOUSEIO_GETPARAMS is used, a key must be specified. When
WSMOUSEIO_SETPARAMS is used, a key and a value must be specified. A single ioctl may
retrieve up to WSMOUSECFG_MAX nparams.

B.5 The Console Keyboard/Mouse Multiplexor.

The wsmux is a pseudo-device driver that allows several wscons(4) input devices to have their
events multiplexed into one stream. The typical usage for this device is to have two multiplexors,
one for mouse events and one for keyboard and bell events. All wsmouse(4) devices should direct
their events to the mouse mux, normally 0 and all keyboard devices, except the console, should
direct their events to the keyboard mux, normally 1. A device will send its events to the mux
indicated by the mux locator. If none is given the device will not use a multiplexor. The keyboard
multiplexor should be connected to the display, using the wsconscfg(8) command. It will then
receive all keystrokes from all keyboards and, furthermore, keyboards can be dynamically attached
and detached without further user interaction. In a similar way, the window system will open
the mouse multiplexor and receive all mouse events; mice can also be dynamically attached and
detached. If a wskbd(4) or wsmouse(4) device is opened despite having a mux it will be detached
from the mux. It is also possible to inject events into a multiplexor from a user program.

B.5.1 The ioctl interface.

The following ioctl(2) calls are available for th wsmux device defined in <dev/wscons/wsconsio.h>:

• WSMUXIO_INJECTEVENT struct wscons_event — injects a
wscons_event in the queue. The structure is defined in
<dev/wscons/wsconsio.h>:

Listing B.23: The wscons_event structure.
struct wscons_event {

u_int type;

B.5. THE CONSOLE KEYBOARD/MOUSE MULTIPLEXOR. 267

int value;
struct timespec time;

};

The type member could be one of:

– WSCONS_EVENT_KEY_UP — key code;

– WSCONS_EVENT_KEY_DOWN — key code;

– WSCONS_EVENT_ALL_KEYS_UP — void;

– WSCONS_EVENT_MOUSE_UP — button # leftmost = 0;

– WSCONS_EVENT_MOUSE_DOWN — button # leftmost = 0;

– WSCONS_EVENT_MOUSE_DELTA_X — x delta amount;

– WSCONS_EVENT_MOUSE_DELTA_Y — y delta amount;

– WSCONS_EVENT_MOUSE_ABSOLUTE_X — x location;

– WSCONS_EVENT_MOUSE_ABSOLUTE_Y — y location;

– WSCONS_EVENT_MOUSE_DELTA_Z — z delta amount;

– WSCONS_EVENT_MOUSE_ABSOLUTE_Z — legacy;

– WSCONS_EVENT_MOUSE_DELTA_W — w delta amount;

– WSCONS_EVENT_MOUSE_ABSOLUTE_W — legacy;

– WSCONS_EVENT_SYNC — synchronization signal generated;

Following events are not real wscons_event but are used as parameters of the WSDISPLAYIO_WSMOUSED
ioctl:

– WSCONS_EVENT_WSMOUSED_ON — wsmoused(8) active;

– WSCONS_EVENT_WSMOUSED_OFF — wsmoused(8) inactive.

• WSMUXIO_ADD_DEVICE struct wsmux_device— adds a new multiplexor to the devices list.
The wsmux_device structure is:

Listing B.24: The wsmux_device structure.
struct wsmux_device {

int type;
int idx;

};

The type member is one of:

– WSMUX_MOUSE;

– WSMUX_KBD;

– WSMUX_MUX;

The idx member is the index inside the wmux multiplexors list.

• WSMUXIO_REMOVE_DEVICE struct wsmux_device— removes the corresponding multiplexor
from wmux list. See WSMUXIO_ADD_DEVICE;

• WSMUXIO_LIST_DEVICES struct wsmux_device_list — retrieves the multiplexors list of
the devices in wmux. The wsmux_device_list is:

268 APPENDIX B. THE WORKSTATION CONSOLE ACCESS.

Listing B.25: The wsmux_device_list structure.

#define WSMUX_MAXDEV 32

struct wsmux_device_list {
int ndevices;
struct wsmux_device devices[WSMUX_MAXDEV];

};

The ndevices member could span from 0 to WSMUX_MAXDEV values. The devices member
is an array of WSMUX_MAXDEV wsmux_device elements present in the wmux.

Listing B.26: wsmux - program to shows devices in wsmux.

1 /* -*- mode: c-mode; -*- */
2
3 /* wsmux.c file. */
4 #include <stdio.h>
5 #include <stdlib.h>
6 #include <stdint.h>
7 #include <string.h>
8 #include <unistd.h>
9 #include <fcntl.h>

10 #include <errno.h>
11 #include <time.h>
12 #include <inttypes.h>
13 #include <sys/types.h>
14 #include <sys/ioctl.h>
15 #include <dev/wscons/wsconsio.h>
16
17 #define FOREVER for (;;)
18
19 /* program wsmux.c */
20 /* Functions prototypes. */
21 int main(int , char *[]);
22
23 /* Main function. */
24 int main(int argc , char *argv [])
25 {
26 int fd;
27 int i;
28 long int ret = EXIT_FAILURE;
29 struct wsmux_device_list mdevices;
30
31 /* Check arguments count. */
32 if(argc == 2) {
33 fd = open(argv[1], O_RDWR | O_EXCL);
34 if(fd >= 0) {
35 if(ioctl(fd, WSMUXIO_LIST_DEVICES , &mdevices) >= 0) {
36 printf("opened␣%s.\n", argv[1]);
37 for(i = 0; i < mdevices.ndevices; i++) {
38 printf("LIST_DEVICES:␣%d␣%d\n", \
39 mdevices.devices[i].type , \
40 mdevices.devices[i].idx);

B.5. THE CONSOLE KEYBOARD/MOUSE MULTIPLEXOR. 269

41 }
42 } else
43 perror("error␣retrieving␣devices␣list");
44 close(fd);
45 } else
46 fprintf(stderr , "error␣open␣device␣%s.\n", argv[1]);
47 } else
48 fprintf(stderr , "usage:␣wsmux␣<device >\n");
49 exit(ret);
50 }
51
52 /* End of wsmux.c file. */

Index

/dev/MAKEDEV, 61
/dev/cua*, 76
/dev/cua03, 77
/dev/tty*, 76
/dev/tty03, 77
/etc/master.passwd, 95
/etc/services, 194
/etc/services, 194
/usr/ports, 14
/usr/src, 14
/var/log/wtmp, 98
/var/run/utmp, 98, 99
<dev/wscons/wksymdef.h>, 258
<dev/wscons/wsconsio.h>, 249, 256–258,

263, 264, 266
<dev/wscons/wsksymdef.h>, 256
<dev/wscons/wsksymvar.h>, 258
<errno.h>, 16, 17
<fcntl.h>, 50
<fstab.h>, 217
<grp.h>, 97
<netdb.h>, 192, 194
<netinet/in.h>, 196
<pwd.h>, 95
<signal.h>, 112, 113, 117, 132, 231
<stdio.h>, 27, 31, 231
<stdlib.h>, 36, 231, 233
<string.h>, 52, 231, 232
<sys/dirent.h>, 64
<sys/disklabel.h>, 203
<sys/fcntl.h>, 79
<sys/ioctl.h>, 75
<sys/ipc.h>, 175, 183, 187
<sys/msg.h>, 174–177
<sys/proc.h>, 146
<sys/resource.h>, 145, 226
<sys/sem.h>, 181, 183
<sys/shm.h>, 185–187
<sys/siginfo.h>, 113
<sys/signals.h>, 124
<sys/socket.h>, 164–166

<sys/stat.h>, 220
<sys/stat.h>, 62
<sys/time.h>, 102, 109
<sys/types.h>, 174, 181, 186
<sys/unistd.h>, 62
<sys/wait.h>, 135, 145
<termios.h>, 82
<ufs/ffs/fs.h>, 208, 209, 217
<ufs/ufs/dinode.h>, 219
<ufs/ufs/inode.h>, 208
<unistd.h>, 231
<utmp.h>, 98
^Z, 157
{ARG_MAX}, 132
386BSD, 15
3BSD, 15
4.2BSD, 15
4.3BSD, 15
4.3BSD Net1, 15
4.3BSD Net2, 15
4.3BSD Reno, 15
4.3BSD Tahoe, 15
4.3BSD-Lite, 15
4.4BSD, 9, 15
4.4BSD File System, 55
4.4BSD-Encumbered, 15
4.4BSD-Lite, 15
4.4BSD-based, 16
4BSD, 15

accept, 167, 196
access, 62
Address already in use, 21
Address family not supported by protocol fam-

ily, 21
AF_INET, 164, 193, 196
AF_INET6, 164
AF_UNIX, 164, 168
AF_UNSPEC, 168
alarm, 107
alarm, 106
alarm, 106, 107, 119, 134

271

272 INDEX

ALT, 256
alternate signal stack, 124
alternate stack, 125
ALTWERASE, 84
ANSI X3.159-1989, 54
ANSI C89, 54
arg.array, 183
arg.buf, 183
ARG_MAX, 17
argc, 131
Argument list too long, 17
argv, 131
ARPANET, 15, 191
ASCII, 34, 103
asctime, 104
AT&T UNIX, 15
atexit, 132
Attribute not found, 24
Authentication error, 24

B0, 85
B110, 85
B115200, 85
B1200, 85
B134, 85
B14400, 85
B150, 85
B1800, 85
B19200, 85
B200, 85
B230400, 85
B2400, 85
B28800, 85
B300, 85
B38400, 85
B4800, 85
B50, 85
B57600, 85
B600, 85
B7200, 85
B75, 85
B76800, 85
B9600, 85
Bad address, 18
Bad file descriptor, 18
Bad message, 25
Bad procedure for program, 24
BBLOCK, 208
BBSIZE, 208
bcmp, 229
bcopy, 229
Bell Laboratories, 15

Berkeley DARPA UNIX, 15
Berkeley Fast File System, 15
Berkeley Software Distribution, 15
bg, 157
big endian, 196
bind, 73, 167, 196
BIOS, 56
blkmap(fs,map,loc), 218
blknum(fs,fsb), 218
blkoff(fs,loc), 218
blkroundup(fs,size), 218
blksize, 56, 214
blksize(fs,ip,lbn), 219
blkstofrags(fs,blks), 218
Block device required, 18
block size, 208
blocks, 56
bootstrap program, 205
Brian W. Kernighan, 27
BRKINT, 83
Broken pipe, 20
BSD, 15, 16
BSD disk label, 205
BUFSIZ, 27, 31
byte order, 196
bzero, 229

C, 237
C programming language, 10, 14
C shell, 15
calling process, 72
calling unit, 77
calling units, 77
Can’t assign requested address, 21
Can’t send after socket shutdown, 22
Cannot allocate memory, 18
cbtocylno(fs,bno), 218
cbtorpos(fs,bno), 218
CCTS_OFLOW, 84
cd9660, 55
cgbase(fs,c), 218
cgdata(fs,c), 218
cgdmin(fs,c), 218
cgimin(fs,c), 218
cgmeta(fs,c), 218
cgsblock(fs,c), 218
cgstart(fs,c), 218
cgtod(fs,c), 218
change in child process status, 111
chdir, 71
child process, 130, 135, 136
child process, 130

INDEX 273

chmod, 71, 73
chown, 71
CHWFLOW, 84
CIGNORE, 83
circular link, 57
client, 163
client, 163
client/server, 163
CLK_TCK, 107
CLOCAL, 84
close, 50, 53, 132, 134, 167
close-on-exec, 53, 54, 88, 132, 140
close-on-exec, 28
closedir, 66
compose, 256
Computer Consoles Incorporated, 15
connect, 20, 22, 167, 168, 196
Connection reset by peer, 22
controlling terminal, 144
controlling terminal, 144
conversion specification, 34
Coordinated Universal Time, 101
core, 111
core dump, 111
core file, 136
CREAD, 83
Cross-device link, 19
CRTS_IFLOW, 84
CRTSCTS, 84
CS5, 83
CS6, 83
CS7, 83
CS8, 83
CSIZE, 83
CSTOPB, 83
current directory, 57
cylinder, 202
cylinder group, 214, 215
cylinder group, 214
cylinder group block, 214
cylinder group information, 214

d_fileno, 64
d_type, 64
DARPA, 15
DARPA, 191
DARPA Internet networking protocols, 15
datagram, 164
datagram, 164
datagram socket, 22
dblksize(fs,dip,lbn), 219
dbtofsb(fs,b), 217

ddb.console, 256
dead accent, 256
dead network, 22
Defence Advanced Research Project Agency,

191
Defence Advanced Research Projects Agency,

15
demand paging, 15
Dennis M. Ritchie, 27
Destination address required, 21
DEV_BSIZE, 56, 212, 214, 219
Device busy, 18
Device not configured, 17
difftime, 104
DIOCGDINFO, 205
DIOCGPDINFO, 205
DIOCRLDINFO, 205
DIOCSDINFO, 205
DIOCWDINFO, 205
directory, 23, 57, 72, 73
directory, 57
Directory not empty, 23
disk, 201
disk, 201, 203
disk drive, 58
disk geometry, 202
disk label, 203
disk label, 203
disk pack, 203
Disk quota exceeded, 23
disklabel, 61
disklabel, 208
DOS, 205
DT_BLK, 65
DT_CHR, 64
DT_DIR, 64
DT_FIFO, 64
DT_LNK, 65
DT_REG, 65
DT_SOCK, 65
DT_UNKNOWN, 64
dtog(fs,d), 218
dtogd(fs,d), 218
DTYPE_ATAPI, 204
DTYPE_CCD, 204
DTYPE_DEC, 204
DTYPE_ESDI, 204
DTYPE_FLOPPY, 204
DTYPE_HPFL, 204
DTYPE_HPIB, 204
DTYPE_MSCP, 204
DTYPE_RAID, 204

274 INDEX

DTYPE_RDROOT, 204
DTYPE_SCSI, 204
DTYPE_SMD, 203
DTYPE_ST506, 204
DTYPE_VND, 204
dup, 53, 138
dup2, 53, 54
dup3, 54

E2BIG, 17
EACCES, 18
EADDRINUSE, 21
EADDRNOTAVAIL, 21
EAFNOSUPPORT, 21
EAGAIN, 20, 166, 167, 170, 184
EALREADY, 20, 168
EAUTH, 24
EBADF, 18
EBADMSG, 25
EBADRPC, 23
EBUSY, 18
ECANCELED, 24
ECHILD, 18, 113, 136
ECHOCTL, 84
ECHOK, 84
ECHOKE, 84
ECHOPRT, 84
ECONNABORTED, 22
ECONNREFUSED, 22
ECONNRESET, 22
EDEADLK, 18
EDESTADDRREQ, 21
EDOM, 20
EDQUOT, 23
EEXIST, 18
EFAULT, 18
EFBIG, 20
effective GID, 183, 187
effective group id, 94, 132, 175, 186
effective group id, 94
effective UID, 183, 187
effective user id, 93, 94, 132, 175, 176, 183,

186, 187
effective user id, 93
EFTYPE, 24
EHOSTDOWN, 23
EHOSTUNREACH, 23
EIDRM, 178
EIDRM, 24, 177
EILSEQ, 24
EINPROGRESS, 20, 168
EINTR, 17, 106, 113, 123, 168

EINVAL, 19, 131
EIO, 17
EIPSEC, 24
EISCONN, 22, 168
EISDIR, 19
ELOOP, 23
EMEDIUMTYPE, 24
EMFILE, 19
EMLINK, 20
EMSGSIZE, 21
ENAMETOOLONG, 23
end-of-file, 31, 32, 35, 51, 53, 90, 96
endiannes, 196
endpwent, 96
ENEEDAUTH, 24
ENETDOWN, 22
ENETRESET, 22
ENETUNREACH, 22
ENFILE, 19
Enhanced Fast Filesystem, 202
ENOATTR, 24
ENOBUFS, 22
ENODEV, 19
ENOENT, 17
ENOEXEC, 18, 131
ENOLCK, 24
ENOMEDIUM, 24
ENOMEM, 18
ENOMSG, 24, 178
ENOPROTOOPT, 21
ENOSPC, 20
ENOSYS, 24
ENOTBLK, 18
ENOTCONN, 22
ENOTDIR, 19
ENOTEMPTY, 23
ENOTRECOVERABLE, 25
ENOTSOCK, 21
ENOTSUP, 25
ENOTTY, 19
environ, 131
ENXIO, 17
EOF, 16, 29, 31, 35, 194
EOPNOTSUPP, 21
EOVERFLOW, 24
EOWNERDEAD, 25
EPERM, 17, 115, 125
EPFNOSUPPORT, 21
EPIPE, 20, 165, 168
EPROCLIM, 23
EPROCUNAVAIL, 24
EPROGMISMATCH, 24

INDEX 275

EPROGUNAVAIL, 23
EPROTO, 25
EPROTONOSUPPORT, 21
EPROTOTYPE, 21
ERANGE, 20, 230
EREMOTE, 23
EROFS, 20
ERPCMISMATCH, 23
errno, 166, 170, 184
errno, 16, 17, 51, 53, 54, 62, 71–73, 90, 94,

95, 106–109, 113, 116, 122, 123,
125, 129–131, 135, 136, 165–170,
176–178, 182–184, 187, 188, 197,
224, 228, 230–232, 234

errno, 16
ESC, 256
ESHUTDOWN, 22
ESOCKTNOSUPPORT, 21
ESPIPE, 20
ESRCH, 17
ESTALE, 23
Ethernets, 15
ETIMEDOUT, 22, 165
ETOOMANYREFS, 22
ETXTBSY, 19
EUSERS, 23
EWOULDBLOCK, 90, 166, 167, 170
EXDEV, 19
exec, 88, 131–134, 138
Exec format error, 18
execl, 131, 132
execle, 131, 132
execlp, 131, 132
execute, 138
execute, 73
execv, 131, 132
execve, 131
execvp, 131, 132
exit, 36
EXIT_FAILURE, 36, 42
EXIT_SUCCESS, 36, 42
explicit_bzero, 229
ext2fs, 55
EXTA, 85
EXTB, 85
external functions, 240
EXTPROC, 84

F_DUPFD, 88
F_DUPFD_CLOEXEC, 88
F_GETFD, 88
F_GETFL, 89

F_GETOWN, 89
F_OK, 62
F_SETFD, 88
F_SETFL, 89, 90
F_SETOWN, 89
Fast File System, 55
fchdir, 71
fchmod, 71
fchown, 71
fclose, 29
fcntl, 20, 88, 90
FD_CLOEXEC, 88, 132
FD_CLOEXEC, 50
FD_CLR, 91
FD_ISSET, 91
FD_SET, 91
FD_SETSIZE, 91
FD_ZERO, 91
fdisk, 205
fdopen, 54
fexecve, 131, 132
fflush, 29
FFS, 55, 56
FFS2, 56
fg, 157
fgets, 31
fgets, 31
FILE, 27, 54
FILE, 27, 28
file, 23, 24, 57, 58, 71–73, 75
file, 57
file descriptor, 21, 23, 49–51, 53, 54, 71, 72,

75, 88, 90, 131, 138, 167–169, 205
file descriptor, 49
file descriptor socke, 167
File exists, 18
File name too long, 23
file offset, 131
file pointer, 29
file pointer, 27
file system, 20, 49, 56, 57, 61, 72, 73, 132,

201, 202, 205, 207–209, 214, 215,
217, 220

file system, 55, 201
File too large, 20
floating point exception, 111
flock, 88
FLUSHO, 84
focus, 248
focus, 248
fopen, 28, 54
fork, 130, 144

276 INDEX

FORTRAN, 237–241
FORTRAN 90, 10
fprintf, 34, 35
fprintf, 36
fpurge, 29
fputs, 31
fputs, 31
fragments, 56
fragnum(fs,fsb), 218
fragoff(fs,loc), 218
fragroundup(fs,size), 218
fragstoblks(fs,frags), 218
Franz LISP, 15
fread, 32
fread, 32
fread, 32
freespace(fs,p), 219
fs_cpc, 215
fs_cs, 214
fs_csaddr, 214
fs_cssize, 214
fs_flags, 214
fs_fsmnt, 214
FS_KERNMAXFILESIZE(pgsiz,fs), 219
fs_minfree, 56, 214
fs_optim, 56, 214
FS_OPTSPACE, 214
FS_OPTSPACE, 56
FS_OPTTIME, 214
FS_OPTTIME, 56
fs_rotdelay, 214
FS_UNCLEAN, 214
fsbtodb(fs,b), 217
fscanf, 34–36, 54
fscanf, 35
fseek, 38
ftell, 38
ftp, 191
ftruncate, 72
full-duplex, 164
full-duplex connection, 167
Function not implemented, 24
fwrite, 32
fwrite, 32
fwrite, 32

g95, 237
gcc, 57, 237
GETALL, 183
getc, 29
getcwd, 230, 231
getegid, 94

getenv, 131, 230
geteuid, 94
getfsfile, 216, 217
getgid, 94
getgroups, 94
gethostbyaddr, 192, 193
gethostbyname, 192, 193, 196
gethostname, 196, 197
getitimer, 109
getlogin, 93
GETNCNT, 183
getpgid, 144
getpgrp, 144
GETPID, 183
getpid, 144
getpwent, 96
getpwnam, 95, 96
getpwuid, 95, 96
getRecord, 42
getrlimit, 134, 223, 224
getrusage, 226
getservbyname, 194, 196
getservbyport, 194
getsockopt, 21
gettimeofday, 101, 102
getty, 77
getuid, 94
GETVAL, 183
GETZCNT, 183
GID, 182
gid_t, 71, 94
gid_t, 95
gmtime, 103
gmtime, 104
GNU Emacs, 14
group, 71
group access list, 95
group access list, 94
group file, 97
group file, 93
group id, 72, 115, 132

h_addr, 192
h_addr_list, 192
h_name, 192
hard limit, 224
hard link, 72
hard link, 62, 72
hardware terminal, 76
hardware terminal, 76
head, 202
heapsort, 233, 234

INDEX 277

host byte order, 196
Host is down, 23
host type order, 196
hostent, 192
hostname, 191, 192, 197
hostname, 191
hot spot, 252
htohs, 196
htonl, 196
htons, 196
HUPCL, 84

i-node, 20, 23, 56, 219
i-nodes, 56
ICANON, 84
ICRNL, 83
Identifier removed, 24
IEXTEN, 84
IGNBRK, 83
IGNCR, 83
IGNPAR, 83
Illegal byte sequence, 24
Illegal seek, 20
IMAXBEL, 83
in-core label, 205
Inappropriate file type or format, 24
Inappropriate ioctl for device, 19
INLCR, 83
ino_to_cg(fs,x), 218
ino_to_fsba(fs,x), 218
ino_to_fsbo(fs,x), 218
inode, 214, 215, 219
inodes, 214
INOPB(fs), 219
INOPF(fs), 219
INPCK, 83
Input/output error, 17
int, 75, 94, 95, 117, 135
Intel 386 CPU, 15
interface block, 240
Internet address, 192
Internet domain, 191, 196
Internet domain, 191
Internet domain address, 191
internetwork number, 191
internetwork number, 191
interprocess communication, 191, 196
interprocess communication, 163
Interrupted system call, 17
interval timers, 109
Invalid argument, 19
ioctl, 79

ioctl, 19, 60, 75, 77, 88, 144, 205, 248, 249,
256, 263, 266

ioctl, 19
ipc, 163
IPC_CREAT, 182, 186
IPC_M, 175
IPC_NOWAIT, 184
ipc_perm, 175, 187
IPC_PRIVATE, 175, 182, 186
IPC_R, 175
IPC_RMD, 176
IPC_RMID, 176, 183, 187, 188
IPC_SET, 176, 183, 187
IPC_STAT, 176, 183, 187
IPC_W, 175
IPsec processing failure, 24
Is a directory, 19
isatty, 231
ISIG, 84
ISTRIP, 83
it_interval, 109
it_value, 109
ITIMER_PROF, 109
ITIMER_REAL, 109, 149, 150
ITIMER_VIRTUAL, 109
itimerval, 109
IUCLC, 83
IXANY, 83
IXOFF, 83
IXON, 83

job, 143
job control, 15
job control, 128
job control mechanism, 143
jobs, 157, 161

kernel, 80, 81, 93, 102, 219
kernel, 14
keyboard bells, 256
keyboard events, 256
kill, 115, 117
kill, 115
killpg, 145, 159
Korn shell, 144, 161
Korn shell, 143
ksh, 144
ksh, 143

label, 205
label, 205
LABELOFFSET, 205
LABELSECTOR, 205

278 INDEX

lblkno(fs,loc), 218
lblktosize(fs,blk), 218
library routine, 15
library routines, 15
line, 31
line, 31
line discipline, 77
line discipline, 77
link, 72
Linux, 205
listen, 166, 167
listen queue, 166, 167
listen queue, 166
little endian, 196
lldb, 10
local-area network, 191
localtime, 103
LOCK_EX, 89, 90
LOCK_NB, 90
LOCK_SH, 89, 90
LOCK_UN, 90
login name, 96
login name, 93
login shell, 157
login terminal, 77
longjmp, 120
low-level, 49, 52, 54
low-level, 49
low-level routine, 53
lseek, 53
lstat, 62

magnetic tape, 58
main, 131
major device number, 61
man section, 11
man subsection, 11
manual page, 11
MAP_STACK, 125
MAXBSIZE, 56, 214
MAXMNTLEN, 214
MAXNAMELEN, 65
mbrtowc, 34
MDMBUF, 84
memcmp, 229
memcpy, 229, 230
memmove, 229, 230
memset, 229, 230
mergesort, 233, 234
message queue, 174, 175
message queues, 174
Message too long, 21

mfs, 55
MINBSIZE, 214
minor device number, 61
minor number, 77
MINSIGSTKSZ, 125
mkdir, 72, 73
mkdirat, 73
mkfifo, 73
mkfifoat, 73
mknod, 73
mknodat, 73
mlock, 133
mlockall, 133
mode_t, 71, 72
mq_close, 133
msdos, 55
msg_ctime, 176
MSG_EOR, 165, 168
msg_lrpid, 176, 178
msg_lspid, 176, 177
MSG_NOSIGNAL, 165, 168
MSG_OOB, 165, 166, 168, 169
MSG_PEEK, 166, 169
msg_perm.cgid, 175
msg_perm.cuid, 176
msg_perm.cuid, 175
msg_perm.gid, 175, 176
msg_perm.mode, 175, 176
msg_perm.uid, 176
msg_perm.uid, 175
msg_qbytes, 176, 177
msg_qnum, 176–178
msg_rtime, 176, 178
msg_stime, 176, 177
MSG_WAITALL, 166, 169
msgctl, 174, 176
msgflg, 175
msgget, 175, 176
msgrcv, 174, 176–178
msgrcv, 174
msgsnd, 176, 177
msgsnd, 174
msgtyp, 177
msqid, 176
msqid_ds, 176
MSTSDISC, 78
mtext, 177, 178
mtype, 177
munmap, 132
Murphy’s Law, 16

NAME_MAX, 23

INDEX 279

Need authenticator, 24
NetBSD, 15, 16
network byte order, 196
network byte order, 196
Network dropped connection on reset, 22
Network is down, 22
Network is unreachable, 22
network number, 196
new process image file, 131
new-line, 31
new-line character, 31
nfs, 55
NFS file system, 23, 24
NFS filesystem, 24
NFS server, 23
NGROUPS_MAX, 94, 95
nice, 133
NINDIR(fs), 219
NL_TEXTMAX, 232
NMEADISC, 78
No buffer space available, 22
No child processes, 18
No locks available, 24
No medium found, 24
No message of desired type, 24
No route to host, 23
No space left on device, 20
No such file or directory, 17
No such process, 17
NOFLSH, 84
nohup, 157
NOKERNINFO, 84
Not a directory, 19
Not supported, 25
NSIG, 232
NSPB(fs), 219
NSPF(fs), 219
NTFS, 56
ntfs, 55
ntohl, 196
NUL-terminated, 140
NULL, 16, 28, 31, 54, 66, 96, 101, 102, 108,

122, 123, 129, 133, 140, 187, 192,
194, 251

NULL, 93
null-terminated, 31
number of blocks, 208
Numerical argument out of domain, 20
numfrags(fs,loc), 218

O_APPEND, 50, 89
O_ASYNC, 89

O_CLOEXEC, 50, 54, 140
O_CREAT, 50
O_DIRECTORY, 50
O_EXCL, 28, 50, 54
O_EXLOCK, 50
O_NOFOLLOW, 50
O_NONBLOCK, 50, 89, 140, 165–170
O_RDONLY, 50
O_RDWR, 50
O_SHLOCK, 50
O_SYNC, 50, 89
O_TRUNC, 50
O_WRONLY, 50
OCRNL, 83
off_t, 53
offset, 38
offset, 38
OLCUC, 83
on-disk inode, 219
on-disk label, 205
ONLCR, 83
ONLRET, 83
onnection refused, 22
ONOCR, 83
ONOEOT, 83
open, 50, 54, 73, 134
openat, 73
OpenBSD, 9, 13–16, 22, 24, 55–58, 61, 75,

76, 81, 85, 88, 93, 94, 97, 101, 103,
108, 109, 111, 113, 122, 125, 128,
129, 144, 161–163, 191, 201, 202,
226, 230–233, 237

OpenBSD Manual Page, 10
opendir, 66
OpenSMTPD, 14
opensource, 14
OpenSSH, 14
operating system, 9, 14–16, 57, 58, 75, 163,

191
Operation already in progress, 20
Operation canceled, 24
Operation not permitted, 17
Operation not supported, 21
Operation not supported by device, 19
Operation now in progress, 20
Operation timed out, 22
OPOST, 83
out-of-band, 90
owner, 71
owner id, 72
OXTABS, 83

280 INDEX

page replacement, 15
page-aligned, 125
PARENB, 83
parent process, 130
parent process, 130
parent process id, 133
PARMRK, 83
PARODD, 83
passwd, 95, 96
password file, 95
password file, 93
PATH, 131
path name, 214
path name, 57
PATH_MAX, 23
pathname, 24
pclose, 140
PENDIN, 84
Permission denied, 18
perror, 10, 16, 52, 231
pipe, 163
pipe, 54, 140
pipe2, 140
pledge, 207
poll, 90
poll, 90
poll, 165, 168
popen, 140
port number, 191
port number, 191
POSIX.1, 72
POSIX.1-2017, 134
posix_spawn, 134
posix_spawnp, 134
posix_trace_eventid_open, 133
posix_trace_trid_eventid_open, 133
PPPDISC, 78
Previous owner died, 25
primary line discipline, 77
printf, 27, 35
printf, 37
process, 143
process group, 144, 159
process group, 143
process group id, 130, 133, 135, 144, 145
process id, 130, 133, 135, 136, 144, 145, 177,

178
process image file, 131
Program version wrong, 24
Protocol error, 25
Protocol family not supported, 21
Protocol not available, 21

Protocol not supported, 21
Protocol wrong type for socket, 21
pselect, 168
psignal, 231
psignal, 231
pthread_atfork, 132
PTHREAD_CANCEL_DEFERRED, 133
PTHREAD_CANCEL_ENABLED, 133
PTHREAD_CREATE_JOINABLE, 133
pthread_sigmask, 134
ptys, 77
putc, 29
putenv, 131, 230
putenv, 230
putRecord, 42

qsort, 233, 234
queue id, 174

R_OK, 62
read, 15, 51, 52, 77, 164
read, 73
read-only, 20, 140
Read-only file system, 20
readdir, 66
readlink, 62
real group id, 94, 132, 134
real group id, 94
real user id, 93, 94, 132, 134
real user id, 93
recv, 165, 166, 168
recvfrom, 168–170, 196
remote host, 24
remote program, 24
remote socket, 22
rename, 23, 72
Resource deadlock avoided, 18
resource limit, 224
Resource temporarily unavailable, 20
Result too large, 20
rewind, 38
RLIM_INFINITY, 224
RLIM_SAVED_CUR, 224
RLIM_SAVED_MAX, 224
RLIMIT_CORE, 223
RLIMIT_CPU, 223
RLIMIT_DATA, 223
RLIMIT_FSIZE, 223
RLIMIT_NOFILE, 223
RLIMIT_NPROC, 223
RLIMIT_RSS, 224
RLIMIT_STACK, 224

INDEX 281

robust mutex, 25
root, 57
root, 57
root directory, 57
root directory, 57
root i-node, 56
root inode, 214
root inode, 214
rotational layout tables, 215
rpc, 23, 24
RPC program not available, 23
RPC struct is bad, 23
RPC version wrong, 23
RUSAGE_CHILDREN, 226
RUSAGE_SELF, 226
RUSAGE_THREAD, 227

S_IEXEC, 63
S_IFBLK, 63
S_IFCHR, 63
S_IFDIR, 63
S_IFIFO, 63
S_IFLNK, 63
S_IFMT, 63
S_IFREG, 63
S_IFSOCK, 63
S_IREAD, 63
S_IRGRP, 63
S_IROTH, 63
S_IRUSR, 63
S_IRWXG, 63
S_IRWXO, 63
S_IRWXU RWX, 63
S_ISGID, 63
S_ISTXT, 63
S_ISUID, 63
S_ISVTX, 63
S_IWGRP, 63
S_IWOTH, 63
S_IWRITE, 63
S_IWUSRW, 63
S_IXGRP, 63
S_IXOTH, 63
S_IXUSR, 63
sa, 117
sa_family, 168
sa_flags, 112, 113
sa_handler, 112
sa_mask, 112
SA_NOCLDSTOP, 112
SA_NOCLDWAIT, 112
SA_NODEFER, 113

SA_ONSTACK, 113, 132
SA_RESETHAND, 112, 113, 118
SA_RESTART, 106, 113
sa_sigaction, 112
SA_SIGINFO, 112, 113
sackaddr, 196
sb, 117
sblksize(fs,size,lbn), 219
SBLOCK, 209
SBLOCKSEARCH, 217
SBSIZE, 209, 214, 215
scanf, 35
scanf, 27
SCHED_FIFO, 133
SCHED_RR, 133
SCHED_SPORADIC, 133
screen, 248
sector, 202
SEEK_CUR, 38, 53
SEEK_END, 38, 53
SEEK_SET, 38, 53
select, 90, 91, 165, 168
SEM_A, 182
sem_close, 132
sem_ctime, 182
sem_flg, 184
sem_nsems, 182
sem_num, 184
sem_op, 184
sem_op, 184
sem_otime, 182
sem_perm.cgid, 182, 183
sem_perm.cuid, 182, 183
sem_perm.gid, 182, 183
sem_perm.mode, 182, 183
sem_perm.uid, 182, 183
SEM_R, 182
SEM_UNDO, 184
semadj, 133
semaphore, 181, 183
semaphore id, 181
semaphore identifier, 182
semaphore set, 181, 182
semctl, 183
semget, 182
semid_ds, 181–183
semop, 133, 184
send, 22, 165, 168
sendto, 168, 169, 196
serial link, 77
serial port, 58
server, 163

282 INDEX

server, 163
set-group-ID, 94
set-group-id, 132
set-user-ID, 94, 115
set-user-id, 132
SETALL, 183
setegid, 94
setenv, 131, 230
seteuid, 94
setgid, 94
setgroups, 94, 95
sethostname, 196, 197
setitimer, 109
setjmp, 120
setpgid, 144
setpwent, 96
setrlimit, 134, 223, 224
setsockopt, 21
settimeofday, 101, 102
setuid, 94, 132
SETVAL, 183
shared memory identifier, 186
shared memory identifier, 186
shell, 129, 140, 144, 156–158
shell, 129
shm_atime, 187
shm_ctime, 187
shm_dtime, 187
shm_lpid, 187
shm_nattch, 187
shm_perm.cgid, 186, 187
shm_perm.cuid, 186, 187
shm_perm.gid, 186, 187
shm_perm.mode, 187
shm_perm.uid, 186, 187
shm_perm.uid field, 187
SHM_RDONLY, 187
SHM_RND, 187
shmat, 187, 188
shmat, 186
shmctl, 186, 187
shmdt, 186–188
shmget, 186, 187
shmid_ds, 187
SHMLBA, 187
SHUT_RD, 167
SHUT_RDWR, 167
SHUT_WR, 167
shutdown, 22, 167
SIG_BLOCK, 122
SIG_DFL, 112, 113, 132
SIG_IGN, 112, 132

SIG_SETMASK, 123
SIG_UNBLOCK, 122
SIGABRT, 114
sigaction, 112, 113, 117, 177, 178
sigaddset, 122
sigaddset, 122
SIGALARM, 119
SIGALRM, 106, 109, 114
sigaltstack, 125
SIGBUS, 114
SIGCHLD, 112–114, 129, 132, 162
SIGCONT, 114, 115, 135, 145
sigdelset, 122
sigdelset, 122
sigemptyset, 122
sigemptyset, 122
SIGEMT, 114
sigfillset, 122
sigfillset, 122
SIGFPE, 114
SIGHUP, 113, 157, 158
SIGHUP, 116
SIGILL, 113
SIGINFO, 115
siginfo_t, 113
SIGINT, 17, 113, 116, 118, 129, 162
SIGIO, 114, 165
sigismember, 122
sigismember, 122
SIGKILL, 112, 114, 116, 123, 159
signal, 117
signal handler, 117
signal mask, 123
signal stack, 125
signals, 15
sigpending, 134
sigpending, 122
SIGPIPE, 114, 140, 165, 168
sigprocmask, 122, 123, 134
SIGPROF, 109, 115
SIGQUIT, 113, 129, 159, 162
SIGQUIT, 17
SIGSEGV, 114, 224
sigset_t, 122
SIGSTKSZ, 125
SIGSTOP, 112, 114, 116, 123, 135, 145, 159
sigsuspend, 122, 123
SIGSYS, 114
SIGTERM, 114, 116
SIGTHR, 115
SIGTRAP, 113
SIGTSTP, 114, 116, 135, 145

INDEX 283

SIGTTIN, 114, 116, 135, 145, 161
SIGTTOU, 114, 116, 135, 145
SIGURG, 114, 165
SIGUSR1, 115–117, 123
SIGUSR2, 115, 116
SIGVTALRM, 109, 115
SIGWINCH, 81, 115
SIGXCPU, 114, 149, 224
SIGXFSZ, 115, 224
sin, 15
sin_addr, 196
sin_port, 196
skeletal label, 205
skeletal label, 205
sleep, 106
snprintf, 37
snprintf, 37
SO_BROADCAST, 169
SO_LINGER, 167
SOCK_CLOEXEC, 164
SOCK_DGRAM, 164–166, 168, 169, 196
SOCK_DNS, 164
SOCK_NONBLOCK, 164
SOCK_RAW, 164, 165, 169
SOCK_SEQPACKET, 164–166, 169
SOCK_STREAM, 164–166, 169, 196
SOCK_STREAM, 21
sockaddr, 167–169
sockaddr_in, 196
socket, 21, 22, 90, 163, 164, 167
socket, 164, 165, 167, 196
socket file descriptor, 165, 166, 168, 169
socket file descriptor, 165
Socket is already connected, 22
Socket is not connected, 22
socket operation, 22, 23
Socket operation on non-socket, 21
Socket type not supported, 21
socklen_t, 167, 169
soft limit, 224
Software caused connection abort, 22
SOMAXCONN, 166
sprintf, 36, 37
sprintf, 37
SS_DISABLE, 125
ss_flags, 125
SS_ONSTACK, 125
ss_size, 125
ss_sp, 125
sscanf, 36
ssh, 191
ssh, 77

SSIZE_MAX, 177
ST_NOSUID, 132
Stale NFS file handle, 23
standard error, 49
standard error, 28
standard error output, 138
Standard I/O Library, 9, 16, 27, 29, 31, 32,

38, 49, 54
standard I/O stream, 140
standard input, 49, 138
standard input, 28
standard input stream, 34
standard output, 49, 138
standard output, 28
stat, 62
stat structure, 71
State not recoverable, 25
stderr, 28
STDERR_FILENO, 49
stdin, 35
stdin, 28, 34
STDIN_FILENO, 49
stdio, 27, 28, 31, 32, 36, 37, 49, 54, 130
stdout, 35
stdout, 28
STDOUT_FILENO, 49
strchr, 231
strcmp, 229
strcpy, 229
stream, 165
stream, 27
stream socket, 164
strerror, 231, 232
strerror_l, 232
strerror_r, 232
strncmp, 229
strncpy, 229
strrchr, 231
strsignal, 231, 233
struct cg, 214, 215
struct dirent, 66
struct fs, 215
struct hostent, 192
struct sigaction, 117
stty, 77
super-block, 56, 209, 214, 215, 217
super-block, 56
super-block, 214
super-user, 56, 61, 93–95, 102, 108, 115, 129,

145, 164, 183, 187, 197, 214, 224
symbolic link, 23, 73
symbolic link, 62

284 INDEX

symbolic links, 73
symlink, 73
SYMLOOP_MAX, 23
synchronous I/O multiplexing, 90
sys_siglist, 232
sys_signame, 232
sysctl, 153
system, 129, 130
system call, 15, 16, 24, 50, 51, 62, 71–73, 75,

77, 79, 88–90, 106, 112, 119, 130,
131, 135, 138, 144, 145, 161, 164,
182, 183, 187, 207

system calls, 73
system calls, 15
system disk driver, 205

TAB0, 83
TAB3, 83
TABDLY, 83
tape drive, 58
tcgetpgrp, 144
TCP/IP, 15, 16
TCP/IP, 191
tcsetpgrp, 144
telnet, 77
terminal, 58
termios, 78
termios, 77
termios line discipline, 77
termios structure, 78
Text file busy, 19
Theo de Raadt, 16
thread, 106
thread id, 133
time, 101
time zone, 103
time_t, 101
times, 107, 134
timestamp, 80
timeval, 108
timezone, 103
TIOCCBRK, 78
TIOCCDTR, 78
TIOCCHKVERAUTH, 79
TIOCCLRVERAUTH, 79
TIOCCONS, 80
TIOCDRAIN, 79
TIOCEXCL, 79
TIOCFLAG_CLOCAL, 80
TIOCFLAG_CRTSCTS, 80
TIOCFLAG_MDMBUF, 80
TIOCFLAG_SOFTCAR, 80

TIOCFLUSH, 79
TIOCGETA, 78
TIOCGETD, 78
TIOCGFLAGS, 81
TIOCGPGRP, 78, 144
TIOCGTSTAMP, 80
TIOCGWINSZ, 79, 81
TIOCM_CAR, 80
TIOCM_CD, 80
TIOCM_CTS, 80
TIOCM_DSR, 80
TIOCM_DTR, 80
TIOCM_LE, 80
TIOCM_RI, 80
TIOCM_RNG, 80
TIOCM_RTS, 80
TIOCM_SR, 80
TIOCM_ST, 80
TIOCMBIC, 80
TIOCMBIS, 80
TIOCMGET, 80
TIOCMSET, 80
TIOCNOTTY, 79, 144
TIOCNXCL, 79
TIOCOUTQ, 78
TIOCSBRK, 78
TIOCSCTTY, 79
TIOCSDTR, 78
TIOCSETA, 78
TIOCSETAF, 78
TIOCSETD, 78
TIOCSETVERAUTH, 79
TIOCSFLAGS, 80
TIOCSPGRP, 78
TIOCSTART, 79
TIOCSTAT, 81
TIOCSTOP, 79
TIOCSTSTAMP, 80
TIOCSWINSZ, 79, 81
tm, 103
tm_isdst, 103
tmpfs, 55
tms_cstime, 107, 134
tms_cutime, 107, 134
tms_stime, 134
tms_utime, 134
token rings, 15
Too many levels of symbolic links, 23
Too many links, 20
Too many open files, 19
Too many open files in system, 19
Too many processes, 23

INDEX 285

Too many references: can’t splice, 22
Too many users, 23
TOSTOP, 84
track, 202
Transmission Control Protocol and Internet

Protocol, 191
truncate, 72
TTY_NAME_MAX, 231
TTYDISC, 78
ttyname, 231
ttyname_r, 231
ttyslot, 231
typematic, 256
tzname, 103

UFS Extended Attribute, 24
UID, 182
uid, 115
uid_t, 71, 94
umask, 73
umask, 73
umask, 72, 73, 134
University of California at Berkeley, 15
UNIX, 9, 10, 13–15, 58, 129
UNIX domain, 191
UNIX Enhanced Fast File System, 201
UNIX Fast File System, 201
UNIX file system, 58, 219
UNIX path name, 191
unlink, 72
unreachable host, 23
unreachable network, 22
unsetenv, 131, 230
unveil, 207
user id, 72, 132
UTC, 101
utimes, 108

Value too large to be stored in data type, 24
VDISCARD, 85
VDSUSP, 85
VEOF, 84
VEOL, 84
VEOL2, 84
VERASE, 84
vi editor, 15
VINTR, 84
virtual circuit, 174
virtual memory, 15, 16
VKILL, 84
VLNEXT, 85
VMIN, 85

VQUIT, 84
VREPRINT, 84
VSTART, 85
VSTATUS, 85
VSTOP, 85
VSUSP, 85
VTIME, 85
VWERASE, 84

W_OK, 62
wait, 135, 136, 145
wait3, 135, 136
wait4, 135, 136, 145, 161
WAIT_ANY, 135, 145
WAIT_MYPGRP, 135, 145
waitpid, 135, 136
WCONTINUED, 135, 145
WCOREDUMP, 136, 146
WEXITSTATUS, 136, 146
whence, 53
WHOHANG, 145
WIFCONTINUED, 135, 145
WIFEXITED, 135, 145, 146
WIFSIGNALED, 136, 145, 146
WIFSTOPPED, 136, 146
window size, 79, 81
window size, 81
window size structure, 79
winsize structure, 79
WNOHANG, 135, 136
Workstation Console Access, 10
workstation console access, 247
write, 23, 51, 52, 77
write, 73
write-only, 140
Wrong medium type, 24
wscons, 10, 247
WSCONS_EVENT_ALL_KEYS_UP, 267
WSCONS_EVENT_KEY_DOWN, 267
WSCONS_EVENT_KEY_UP, 267
WSCONS_EVENT_MOUSE_ABSOLUTE_W, 267
WSCONS_EVENT_MOUSE_ABSOLUTE_X, 267
WSCONS_EVENT_MOUSE_ABSOLUTE_Y, 267
WSCONS_EVENT_MOUSE_ABSOLUTE_Z, 267
WSCONS_EVENT_MOUSE_DELTA_W, 267
WSCONS_EVENT_MOUSE_DELTA_X, 267
WSCONS_EVENT_MOUSE_DELTA_Y, 267
WSCONS_EVENT_MOUSE_DELTA_Z, 267
WSCONS_EVENT_MOUSE_DOWN, 267
WSCONS_EVENT_MOUSE_UP, 267
WSCONS_EVENT_SYNC, 267
WSCONS_EVENT_WSMOUSED_ON, 267

286 INDEX

wsdisplay, 248, 249, 256
wsdisplay, 248, 256
WSDISPLAY_BURN_KBD, 253
WSDISPLAY_BURN_MOUSE, 253
WSDISPLAY_BURN_OUTPUT, 253
WSDISPLAY_BURN_VBLANK, 253
WSDISPLAY_CURSOR_DOALL, 251, 252
WSDISPLAY_CURSOR_DOCMAP, 251, 252
WSDISPLAY_CURSOR_DOCUR, 251, 252
WSDISPLAY_CURSOR_DOHOT, 251, 252
WSDISPLAY_CURSOR_DOPOS, 251, 252
WSDISPLAY_CURSOR_DOSHAPE, 251, 252
WSDISPLAY_DELSCR_FORCE, 254
WSDISPLAY_DELSCR_QUIET, 254
WSDISPLAY_FONTEC__ISO, 253
WSDISPLAY_FONTENC_IBM, 253
WSDISPLAY_FONTORDER_L2R, 253
WSDISPLAY_FONTORDER_R2L, 253
WSDISPLAYIO_ADDSCREEN, 253
WSDISPLAYIO_DELSCREEN, 254
WSDISPLAYIO_GBURNER, 253
WSDISPLAYIO_GCURMAX, 251
WSDISPLAYIO_GCURPOS, 251
WSDISPLAYIO_GCURSOR, 251
WSDISPLAYIO_GETCMAP, 249–251
WSDISPLAYIO_GETPARAM, 254, 255
WSDISPLAYIO_GETSCREEN, 254
WSDISPLAYIO_GETSCREENTYPE, 249
WSDISPLAYIO_GINFO, 249
WSDISPLAYIO_GMODE, 252
WSDISPLAYIO_GTYPE, 249
WSDISPLAYIO_GVIDEO, 250
WSDISPLAYIO_LDFONT, 252, 253
WSDISPLAYIO_LINEBYTES, 255
WSDISPLAYIO_LSFONT, 253
WSDISPLAYIO_MODE_DUMBFB, 252, 255
WSDISPLAYIO_MODE_EMUL, 252
WSDISPLAYIO_MODE_MAPPED, 252
WSDISPLAYIO_PARAM_BACKLIGHT, 255
WSDISPLAYIO_PARAM_BRIGHTNESS, 255
WSDISPLAYIO_PARAM_CONTRAST, 255
WSDISPLAYIO_PUTCMAP, 249, 250
WSDISPLAYIO_SBURNER, 253
WSDISPLAYIO_SCURPOS, 251, 252
WSDISPLAYIO_SCURSOR, 252
WSDISPLAYIO_SETPARAM, 255
WSDISPLAYIO_SETSCREEN, 254
WSDISPLAYIO_SMODE, 252
WSDISPLAYIO_SVIDEO, 250
WSDISPLAYIO_USEFONT, 253
WSDISPLAYIO_VIDEO_OFF, 250
WSDISPLAYIO_VIDEO_ON, 250

WSDISPLAYIO_WSMOUSED, 254, 267
WSEMUL_NO_VT100, 247
WSKBD_BELL_DOALL, 257
WSKBD_BELL_DOPERIOD, 257
WSKBD_BELL_DOPITCH, 257
WSKBD_BELL_DOVOLUME, 257
WSKBD_KEYREPEAT_DOALL, 257
WSKBD_KEYREPEAT_DODEL1, 257
WSKBD_KEYREPEAT_DODELN, 257
WSKBD_LED_CAPS, 258
WSKBD_LED_COMPOSE, 258
WSKBD_LED_NUM, 258
WSKBD_LED_SCROLL, 258
WSKBD_RAW, 259
WSKBD_TRANSLATED, 259
WSKBDIO_BELL, 256
WSKBDIO_COMPLEXBELL, 256, 257
WSKBDIO_GETBACKLIGHT, 258, 259
WSKBDIO_GETBELL, 257
WSKBDIO_GETDEFAULTBELL, 257
WSKBDIO_GETDEFAULTKEYREPEAT, 258
WSKBDIO_GETENCODING, 258
WSKBDIO_GETKEYREPEAT, 257
WSKBDIO_GETLEDS, 258
WSKBDIO_GETMAP, 258
WSKBDIO_GETMODE, 259
WSKBDIO_MAXMAPLEN, 258
WSKBDIO_SETBACKLIGHT, 259
WSKBDIO_SETBELL, 257
WSKBDIO_SETDEFAULTBELL, 257
WSKBDIO_SETDEFAULTKEYREPEAT, 258
WSKBDIO_SETENCODING, 258
WSKBDIO_SETKEYREPEAT, 257, 258
WSKBDIO_SETLEDS, 258
WSKBDIO_SETMAP, 258, 259
WSKBDIO_SETMODE, 259
WSMOUSE_CALIBCOORDS_MAX, 264
WSMOUSE_CALIBCOORDS_RESET, 264
WSMOUSE_COMPAT, 264, 265
WSMOUSE_NATIVE, 264
WSMOUSE_TYPE_ADB, 263
WSMOUSE_TYPE_ALPS, 263
WSMOUSE_TYPE_ARCHIMEDES, 263
WSMOUSE_TYPE_BLUETOOTH, 263
WSMOUSE_TYPE_DOMAIN, 263
WSMOUSE_TYPE_ELANTECH, 263
WSMOUSE_TYPE_HIL, 263
WSMOUSE_TYPE_LMS, 263
WSMOUSE_TYPE_LUNA, 263
WSMOUSE_TYPE_MMS, 263
WSMOUSE_TYPE_NEXT, 263
WSMOUSE_TYPE_PS2 2, 263

INDEX 287

WSMOUSE_TYPE_SGI, 263
WSMOUSE_TYPE_SUN, 263
WSMOUSE_TYPE_SYNAP_SBTN, 263
WSMOUSE_TYPE_SYNAPTICS, 263
WSMOUSE_TYPE_TOUCHPAD, 263
WSMOUSE_TYPE_TPANEL, 263
WSMOUSE_TYPE_USB, 263
WSMOUSE_TYPE_VSXXX, 263
WSMOUSECFG__DEBUG, 266
WSMOUSECFG__FILTERS, 265
WSMOUSECFG__TPFEATURES, 265
WSMOUSECFG__TPFILTERS, 265
WSMOUSECFG__TPSETUP, 266
WSMOUSECFG_BOTTOM_EDGE, 265
WSMOUSECFG_CENTERWIDTH, 265
WSMOUSECFG_DECELERATION, 265
WSMOUSECFG_DISABLE, 265
WSMOUSECFG_DX_MAX, 265
WSMOUSECFG_DX_SCALE, 264
WSMOUSECFG_DY_MAX, 265
WSMOUSECFG_DY_SCALE, 265
WSMOUSECFG_EDGESCROLL, 265
WSMOUSECFG_F2PRESSURE, 265
WSMOUSECFG_F2WIDTH, 265
WSMOUSECFG_HORIZSCROLL, 265
WSMOUSECFG_HORIZSCROLLDIST, 265
WSMOUSECFG_LEFT_EDGE, 265
WSMOUSECFG_LOG_EVENTS, 266
WSMOUSECFG_LOG_INPUT, 266
WSMOUSECFG_MAX, 266
WSMOUSECFG_MTBTN_MAXDIST, 266
WSMOUSECFG_MTBUTTONS, 265
WSMOUSECFG_PRESSURE_HI, 265
WSMOUSECFG_PRESSURE_LO, 265
WSMOUSECFG_REVERSE_SCROLLING, 265
WSMOUSECFG_RIGHT_EDGE, 265
WSMOUSECFG_SMOOTHING, 265
WSMOUSECFG_SOFTBUTTONS, 265
WSMOUSECFG_SOFTMBTN, 265
WSMOUSECFG_STRONG_HYSTERESIS, 265
WSMOUSECFG_SWAPSIDES, 265
WSMOUSECFG_SWAPXY, 265
WSMOUSECFG_TAP_CLICKTIME, 265
WSMOUSECFG_TAP_LOCKTIME, 266
WSMOUSECFG_TAP_MAXTIME, 265
WSMOUSECFG_TAP_ONE_BTNMAP, 266
WSMOUSECFG_TAP_THREE_BTNMAP, 266
WSMOUSECFG_TAP_TWO_BTNMAP, 266
WSMOUSECFG_TOP_EDGE, 265
WSMOUSECFG_TOPBUTTONS, 265
WSMOUSECFG_TRKMAXDIST, 265
WSMOUSECFG_TWOFINGERSCROLL, 265

WSMOUSECFG_VERTSCROLLDIST, 265
WSMOUSECFG_X_HYSTERESIS, 265
WSMOUSECFG_X_INV, 265
WSMOUSECFG_Y_HYSTERESIS, 265
WSMOUSECFG_Y_INV, 265
WSMOUSEIO_GCALIBCOORDS, 263
WSMOUSEIO_GETPARAMS, 264, 266
WSMOUSEIO_GTYPE, 263
WSMOUSEIO_SCALIBCOORDS, 263
WSMOUSEIO_SETMODE, 264
WSMOUSEIO_SETPARAMS, 266
WSMOUSEIO_SRES, 263
WSMUX_MAXDEV, 268
WSMUXIO_ADD_DEVICE, 267
WSMUXIO_LIST_DEVICES, 267
WSMUXIO_REMOVE_DEVICE, 267
WSTOPSIG, 136, 146
WTERMSIG, 136, 146
WUNTRACED, 135, 136, 145, 146

X Window System, 81
X_OK, 62
XCASE, 84
Xorg, 81
XSI message queues, 176
XSI message queues, 175

Bibliography

[1] Brian W. Kernighan and Dennis M. Ritchie. The C programming language. PTR Prentice Hall,
Englewood Cliffs, New Jersey 07632, second edition, 1988.

[2] Marshall Kirk McKusick, Keith Bostic, Michael J. Karels, and John S/ Quarterman. The Design
and Implementation of the 4.4 BSD Operating System. Addison Wesley, 6th edition, June 1999.

[3] W. Richars Stevens. UNIX Network Programming - Interprocess Communications, volume 2.
Pearson Education International, second edition, March 2007.

[4] W. Richars Stevens. UNIX Network Programming - The Sockets Networking API, volume 1.
Pearson Education International, third edition, August 2013.

289

	Contents
	Preface.
	Documentation Conventions.
	Notes on man on OpenBSD.
	Acknowledgements.
	Licensing.

	Introduction.
	System Calls vs. Library Routines.
	Versions of BSD and OpenBSD.
	Error Handling.
	The errno global variable.

	The Standard I/O Library.
	File Pointers.
	Opening and Creating Files.
	Flushing files.
	Closing files.
	Reading and Writing Files.
	The getc and putc Routines.
	The fgets and fputs Routines.
	The fread and fwrite Routines.
	The fscanf and fprintf Routines.
	The sscanf and sprintf Routines.

	Moving Around in Files.

	Low-level I/O.
	File Descriptors.
	Opening and Creating Files.
	Closing Files.
	Reading and Writing Files.
	Moving Around in Files.
	Duplicating File Descriptors.

	Converting File Descriptors to File Pointers.

	Files and Directories.
	File System Concepts.
	FFS Versions.
	Blocks, Fragments and i-nodes.
	Ordinary Files.
	Special files.
	Removable File Systems.
	Device Numbers.
	Hard Links and Symbolic Links.

	Determining the Accessibility of a File.
	Getting Information from an i-node.
	Reading Directories.
	Modifying File Attributes.
	Miscellaneous File System Routines.
	Changing Directories.
	Deleting and Truncating Files.
	Making Directories.
	Linking and Renaming Files.
	Symbolic Links.
	The umask Value.

	Device I/O Control.
	The ioctl System Call.
	Line Disciplines.
	Terminal File Operations.
	Terminal File Request Descriptions.
	The winsize Structure.
	The termios Structure.

	The fcntl System Call.
	Non-blocking I/O.
	The select System Call.

	Information About Users.
	The Login Name.
	The User Id.
	The Group Id.
	The OpenBSD Group Mechanism.

	Reading the Password File.
	Reading the Group File.
	Reading the /var/run/utmp and /var/log/wtmp Files.

	Time and Timing.
	Time.
	Obtaining the Time.
	Timezones.
	Time Differences.

	Sleeping and Alarm Clocks.
	Sleeping.
	The Alarm Clock.

	Process Timing.
	Changing File Times.
	Interval Timers.

	Processing Signals.
	Overview of Signal Handling.
	The sigaction interface.

	The Signals.
	Sending Signals.
	Catching and Ignoring Signals.
	Catching Signals.

	Using Signals for Timeouts.
	The setjmp and longjmp Routines.

	The OpenBSD Signal Mechanism.
	The Signal Mask.
	The Signal Stack.

	Executing Programs
	The System Library Routine.
	Executing Programs Directly.
	Creating Processes.
	Executing Programs.
	Waiting for Processes to Terminate.

	Redirecting Input and Output.
	Setting Up Pipelines.
	The popen Library Routine.
	Creating Pipes Directly.

	Job Control
	Preliminary Concepts.
	The Controlling Terminal.
	Process Groups.
	System Calls.
	The job and process Data Types.
	Using kernel to retrieve processes informations.

	Job Control in the Shell.
	Setting Up for Job Control.
	Executing a Program.
	Stopping a Job.
	Backgrounding and Foregrounding a Job.
	The jobs Command.
	Waiting for Jobs.
	Asynchronous Process Notification.

	Job Control Outside the Shell.
	Important Points.

	Interprocess Communication.
	Sockets.
	The socket System Call.
	The send and recv System Calls.
	The listen System Call.
	The shutdown System Call.
	The accept System Call.
	The connect System Call.
	Connectionless Sockets.
	The sendto System Call.
	The recvfrom System Call.
	A Small Client Program.
	A Small Server Program.

	Message Queues.
	The msgget System Call.
	The msgctl System Call.
	The msgsnd and msgrcv System Calls.

	Semaphores.
	The semget System Call.
	The semctl System Call.
	The semop System Call.

	Shared Memory.
	The shmget System Call.
	The shmctl System Call.
	The shmat and shmdt System Calls.

	Networking.
	Addresses.
	Translating Hostnames Into Network Numbers.
	The gethostbyname and gethostbyaddr Library Routines.

	Obtaining Port Numbers.
	The getservbyname and getservbyport Library Calls.

	Network Byte Order.
	Networking System Calls.

	The File System.
	Disk Terminology.
	The OpenBSD Enhanced Fast File System.
	The disk label.
	The file system.
	Cylinder group related limits.
	Super-block for a file system.
	Inodes.

	Miscellaneous Routines.
	Resource Limits.
	The getrlimit and setrlimit System Call.

	Obtaining Resource Usage Information.
	Manipulating Byte Strings.
	The bcmp routine.
	The bcopy routine.
	The bzero routine.
	The memcmp routine.
	The memcpy routine.
	The memmove routine.
	The memset routine.

	Environment Variables.
	The Current Working Directory.
	Searching for Characters in Strings.
	Determining Whether a File is a Terminal.
	Printing Error Messages.
	The perror routine.
	The psignal routine.
	The strerror routine.
	The strsignal routine.

	Sorting Arrays in Memory.

	FORTRAN vs C Interoperability.
	Data Representation.
	Routines Naming.
	Naming C Routines to be Called from FORTRAN
	Naming FORTRAN Routines to be Called from C

	Returning Values from Functions.
	Return Values from C Code.
	Returning Values from FORTRAN 90 Code.

	Passing Arguments.
	Passing Arguments to a C Function.
	Passing Arguments to a FORTRAN 90 procedure/function.

	The Workstation Console Access.
	Terminal Emulations.
	Generic Display Device Support.
	The ioctl Interface.

	Generic Keyboard Device Support.
	The ioctl Interface.

	Generic Mouse Support.
	The ioctl interface.

	The Console Keyboard/Mouse Multiplexor.
	The ioctl interface.

	Index
	Bibliography

